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Abstract 

The Hybrid Cellular Automata (HCA) method is used in this paper for the optimal design of sewer network problems 

with the fixed layout. The HCA method decomposes the problem into two sub-problems with considering the pipe 

diameters and nodal cover depths as decision variables. Two stages are solved iteratively for determining the decision 

variables in a manner to minimize the total cost of the sewer network subject to the operational constraints. The HCA 

method is used to optimally solve three benchmark examples with different sizes and the results are presented and 

compared to those of the existing methods. The results indicate that the HCA method is more efficient and effective 

than the alternative methods. 

Keywords: Sewer Network, Optimization methods, Cellular Automata, design problem. 

1. Introduction 

Sewer network systems as a necessary urban infrastructure play an important role in the urban areas. The main objective 

of optimal sewer network design problem is minimization of the capital investment on infrastructure whereas ensuring 

good performance under specified design criteria. This topic has received considerable attention and different numerical 

optimization approaches have been introduced and applied to the optimal design of sewer networks (Afshar, Shahidi, 

Rohani, & Sargolzaei, 2011, Afshar & Rohani, 2012). These include the Linear Programming (LP), Non-Linear 

Programming (NLP), Dynamic Programming (DP), and Evolutionary Algorithms. 

There have been some attempts using the Linear Programming method to solve the problem of sewer network design, 

such as Deininger (1970), Dajani and Gemmell (1971), Froise and Burges (1978), and Walters and Templeman (1979). 

Gupta, Agarwal, & Khanna (1976), Lemieux, Zech, & Delarue (1976), and Price (1978) applied NLP and Swamee 

(2001) used the Lagrange multiplier method to yield optimal sewer network design. 

Among these methods, DP is the mostly used method for the optimal design of the sewer networks due to serial features 

of these networks. Merrit and Bogan (1973), Mays and Wenzel (1976), Robinson and Labadie (1981), Yen, Cheng, Jun, 

Voohees, & Wenzel (1984), and Kulkarni and Khanna (1985) applied DP for the optimal design of wastewater and/or 

storm water networks. Although, DP methods are theoretically capable of finding the global optimum solution, but they 

suffer from the curse of dimensionality limitation and therefore are not appropriate method for the large scale real-world 

sewer networks. 

Recently, Evolutionary approaches are being used for the problem due to their simplicity and flexibility for both 

continuous and discrete problems without any assumption about the optimization objectives and good results have been 

reported using these methods. Heaney, Wright, Sample, Field, & Fan (1999) had used Genetic Algorithm (GA) on 

spreadsheet templates to get near-optimal solutions for the optimal design of sewer networks. Liang, Thompson, & 

Young (2004) applied GA and Tabu Search (TS) algorithm for the optimal design of sewer networks. Afshar (2007) 

proposed the sequential feature of solution construction in the Ant Colony Optimization Algorithm (ACOA) to develop 

two partially constrained ACO algorithms for the solution of storm sewer network design problems. Pan and Kao (2009) 

had integrated Quadratic Programming (QP) with GA to solve the sewer network optimization problem. The 

applicability and efficiency of the GA-QP model were tested and the results indicated that the GA-QP model could 

obtain various near optimum design alternatives within an acceptable computational time. Wang and Zhou (2009) 

analyzed and compared the performances of GA, Particle Swarm Optimization (PSO) and Ant Colony Algorithms 

(ACA) from three aspects of convergence, speed and complexity. It was shown that ACA is superior to other methods 
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for better convergence and satisfactory speed. Afshar (2010) applied the Continuous Ant Colony Optimization 

Algorithm (CACOA) for the optimal design of sewer networks. Yeh, Chu, Chang, & Lin (2011) applied TS and 

Simulated Annealing (SA) for the optimization of sewer network problems. 

Since the basic theories of Evolutionary Algorithms, emulating the natural optimization process of evolution, are similar 

to the natural evolutionary process, they need a big search space in spite of intelligent process, and so they involve high 

computational costs and need a large number of iteration and computational efforts to achieve the optimum solutions. 

Moreover, they require some free parameters that should be sensitive analyzed for obtaining the optimal solution. 

Cellular Automata (CA), a novel optimization algorithm, has recently introduced and attracted much attention and has 

been widely applied to some engineering problems. 

In this paper, Hybrid CA (HCA) methods are used for the design of sewer network with the fixed layout. In the HCA 

methods, the problem is decomposed in two stages solved iteratively to get the results. In the first stage, nodal cover 

depths of the network are determined with the fixed values for pipe diameters using a CA method with the nodes 

considered as the CA cells and nodal cover depths as cell states. In the second stage, the obtained nodal cover depths in 

the first stage are used to calculate the pipe diameters with another CA method. In this stage, the pipes considered as the 

CA cells and their diameters as the cell states. Two different updating rules, Continuous and Discrete approaches, are 

used for CA updating rule of the second stage depending on the treatment of the pipe diameters. The CA updating rule is 

derived by requiring that the network cost is minimized in the neighborhood of each cell. The HCA methods are used to 

design three benchmark examples and comparison the results with the existing ones show the efficiency and 

effectiveness of the methods to solve the sewer design optimization problems. 

2. Cellular Automata 

Cellular Automata (CA), a model of self-reproducing system, was conceived by Ulam (1960) and Von Neumann (1966) 

and later completed and improved with the work of other researchers like Thatcher (1964), Codd (1968), and Burks 

(1972). 

CA has a set of identical elements, called cells with finite possible value called cell state. The new states of all cells are 

defined simultaneously using an updating rule, which is a function of the previous state of the cell itself and its 

neighborhoods. 

CA had been used as a simulator in various fields such as computer science, (Wolfram 1988), chemistry (Packard, 1986), 

and medical profession (Sentos & Coutinho, 2001). Recently, some research showed that CA can be used as a practical 

and efficient optimization engine, which relies on the key properties of: locality of the neighborhoods interactions, 

homogeneity of the evolving mechanism, parallelism of the computation, and simplicity of the model structure. CA has 

been extensively used as a viable and efficient optimization algorithm for the structural design (Kita & Toyoda, 2000, 

Missoum, Gürdal, & Setoodeh, 2005, and Setoodeh, Gürdalb, & Watson, 2006), estimating shortest path (Adamatzky 

1996) or trip distribution problems (El Dessouki, Fathi, & Rouphail, 2001), and computer networks (Shuai & Zhao, 

2004). 

In the early applications in water resource problems, CA was used to produce good initial populations for a GA leading 

to improved performance of the GA (Keedwell & khu, 2005, Guo, Keedwell, Walters, & Khu, 2007a). The first use of 

CA as a stand-alone optimizer was demonstrated by Guo, Walters, Khu, & Keedwell (2007b) for optimal design of 

storm sewer networks based on the simplifying assumption of known slopes. Afshar and Shahidi (2009) were the first to 

propose CA with mathematically derived transition rules for the optimal water supply and hydropower operation of a 

single reservoir. Later, Afshar et al. (2011) proposed a single stage CA for the optimal design of sewer networks with 

fixed layout using the nodal excavation depth as the decision variables of the problem. Afshar and Rohani (2012) 

extended the single stage CA method of Afshar et al. (2011) to two stage CA and proposed Hybrid CA, in which nodal 

cover depths and pipes diameter were considered as decision variables. 

3. Sewer Network Size Optimization 

Sewer network system is one of the urban infrastructure systems with huge construction and operation cost and any 

attempt to reduce these costs result in considerable saving. A sewer network is an underground system built to convey 

waste water to one or more collection points (outfalls). 

Optimal sewer network design with a fixed layout aims to find a cost-effective solution by determining the pipes 

diameters and slopes which minimizes the capital investment whilst ensuring a good system performance under specific 

design criteria. The problem of sewer network design for a fixed network layout, in the absence of pumps and drops, 

can be formulated as: 

Min Cnetwork =∑Cpl+∑Cmi=∑LlKp(Dl,Xi,Xj)+∑Km(hmk)                     (1) 
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Subject to: 

Vmin≤ Vl≤ Vmax                 l=1,...,NL                          (2) 

βmin≤ βl≤ βmax                  l=1,...,NL                          (3) 

Smin≤ Sl≤ Smax                  l=1,...,NL                          (4) 

Xmin≤ Xk≤ Xmax                 k=1,...,NN                          (5) 

Dlє D                        l=1,...,NL                           (6) 

Dl≤ Dl
'
                       l=1,...,NL                           (7) 

Where, Cnetwork is the total cost of the network, Cpl is the installation cost of l
th

 pipe, Cmi is the cost of i
th

 manhole, NL is 

the number of pipes in the network, NN is the number of nodes in the network, Ll is the length of l
th

 pipe, Kp is the unit 

cost of l
th

 pipe defined as a function of its diameter (Dl) and upstream and downstream nodal cover depth (Xi,Xj), and 

Km is the cost of manhole construction as a function of manhole depth (hm). 

Equations (2) to (7) represents the constraints of velocity, water-depth ratio, pipe slope, nodal cover depth, 

commercially available pipe diameter, and progressive diameter for the sewer network problem, respectively, where, Vl 

is the velocity of l
th

 pipe, βl = yl/Dl, yl is the flow depth of l
th

 pipe, Sl is the slope of l
th

 pipe, Xk is the cover depth of k
th
 

node, D is the set of commercially available pipe diameters, l
'
 refers to the set of pipe located downstream of pipe l, and 

min, max are the allowable minimum and maximum parameters, respectively. 

4. Hybrid Cellular Automata (HCA) 

Application of CA to any problem requires that four basic components of the CA method, cell, cell state, neighborhood, 

and updating rule, are properly defined. In this paper, pipe diameters and nodal cover depths are chosen as the decision 

variables. 

The Hybrid Cellular Automata (HCA) formulation requires decomposing the problem into two sub-optimization 

problems which are solved iteratively in two stage manners. In the first stage, each node of the sewer network is 

regarded as a cell and nodal cover depths are considered as the cell states, which are determined with the fixed values of 

pipe diameters. In the second stage, the pipe diameters are calculated by solving a second nonlinear sub-optimization 

problem with considering the calculated nodal cover depths from the first stage as fixed values. Two different updating 

rules, continuous and discrete, are derived and used depending on the treatment of pipe diameters. In the continuous 

approach, the pipe diameters are considered as continuous variables and the corresponding updating rule is derived 

mathematically from the original objective function of the problem and followed by a rounding process in which the 

continuous pipe diameters calculated are rounded, if required, to find the discrete optimal pipe diameters, while in the 

discrete approach, an ad-hoc updating rule is derived based on the discrete nature of pipe diameters. The described two 

stage process is iterated until convergence is achieved. 

Considering the nodal cover depths, Xk;k=1,…,NN, and pipe diameters, Dl;l=1,…,NL, as the decision variables, these 

constraints can be easily applied as box constraints. Using a penalty method for satisfaction of remaining constraints, 

the total penalized objective function of the sewer network optimization problem can be defined as follows: 

Min C=∑Cpl+∑Cmi+∑(αCSVvl+ αCSVsl+ αCSVβl)                     (8) 

Where, α is the penalty parameters with large enough positive value, and CSVv, CSVs, CSVβ represent the violation 

from the constraints of velocity, slope, and water-depth ratio for each pipe, respectively, CSVvl=(1-Vl/Vmin)
2
+(Vl/Vmax-1)

2
, 

CSVβl=(1-βl/βmin)
2
+(βl/βmax-1)

2
, CSVsl=(1-sl/smin)

2
+(sl/smax-1)

2
. 

Subject to: 

Xmin≤ Xk≤ Xmax                 k=1,...,NN                          (9) 

Dlє D                       l=1,...,NL                          (10) 

The process is started with arbitrary sets of pipe diameters and nodal cover depths satisfying the constraints of (9) and 

(10). 

4.1 First Stage 

In the first stage, the nodal cover depths are calculated with the minimization of the following local objective function 

over the cell neighborhood (
k ) considering the fixed values for the pipe diameters: 

Ck=∑(Cpl+αCSVvl+ αCSVsl+ αCSVβl)+Cmk                        (11) 
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Subject to the box constraints of Xmin≤ Xk≤ Xmax. 

Minimization of the local objective function of Equation (11) with respect to the nodal cover depth (Xk) leads to the 

nonlinear equations to be solved with the Newton-Raphson method which results in the updated nodal cover depths 

defined as: 

F(Xk)=∂Ck/∂Xk=0     ∆Xk=-Fk/(∂F/∂X)k│
kk

      ∆Xk=∆Xk
kk+1

-∆Xk
kk

              (12) 

Where, Fk
kk

=F(Xk
kk

), kk is the nonlinear iteration index, and ∆Xk is the change in the value of the cell state. Fk and 

(∂F/∂X)k are both implicit functions of the Xk which can be calculated using the chain rule of differentiation and 

Manning equation. This procedure is repeated for the cell under consideration until the convergence is met and the 

process of updating is repeated for all cells of the network at the end of which the first stage is terminated. 

4.2 Second Stage 

In the second stage, the values of nodal cover depths obtained in the first stage are used to get the optimal pipe 

diameters. Two CA approaches are applied to solve this problem, in which the pipes and corresponding diameters are 

considered as the CA cell and cell state, respectively. The neighborhood of the CA is simply considered as the cell itself 

without any neighboring cells. 

4.2.1 Discrete Approach 

In discrete method, the pipe diameters are treated as discrete values leading to an ad-hoc CA updating rule derived 

based on engineering judgment. The diameter of each pipe is changed such that the pipe cost is minimized in a manner 

to satisfy the constraints of velocity and water depth ratio. The following three engineering based ad-hoc updating rule 

is used to update the cell state: 

1) If constraints of velocity and water-depth ratio are all satisfied, pipe diameter is decreased to the lower diameter 

available to minimize the objective function. 

2) If one or both of the maximum velocity and water-depth ratio constraints are violated, the pipe diameter is increased 

to the upper diameter available. 

3) If one or both of the minimum velocity and water-depth ratio constraints are violated, the pipe diameter is decreased 

to the lower diameter available. 

4.2.2 Continuous Approach 

In continuous method, the updating rule is derived mathematically assuming pipe diameter as continuous variable 

followed by a rounding procedure to convert the continuous solutions to discrete available diameters such that the 

following localized objective function is minimized: 

Minimize Cl=Cpl+αCSVvl+αCSVβl+Cmi+Cmj                          (13) 

Subject to the box constraints of: 

Dmin≤ Dl≤ Dmax                                         (14) 

Where i and j refer to the upstream and downstream node of l
th

 pipe, Dmin and Dmax represent the minimum and 

maximum components of available commercial diameters, respectively. The updating rule is derived mathematically by 

requiring that the objective function of Equation (13) is stationary with respect to the cell state with applying the 

Newton-Raphson linearization: 

Gl=∂Cl/∂Dl=0     ∆Dl=-Gl/(∂G/∂D)l       ∆Dl=∆Dl
kk+1

-∆Dl
kk

                (15) 

This procedure is repeated for the cell under consideration until the convergence is met. Once the process of updating of 

all cell states are completed, the continuous diameters so calculated are rounded to the upper discrete diameters 

available before returning to the first stage. More details of the method can be found in the work of Afshar and Rohani 

(2012). 
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Figure 1. Schematic description of the HCA method. 

 

A schematic description of the HCA method is illustrated in Figure 1 for both discrete and continuous versions in which 

the cells, cell states, neighborhood and the updating rules are briefly described for more clarification. 

 

5. Test Examples 

The performance of the HCA method is investigated in this section by applying the model to three design problems with 

different sizes in the literature. These hypothetical test examples were previously proposed and used by Moeini and 

Afshar (2012 a,b) for the simultaneous layout and size optimization of sewer network using ACOA based methods. 
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Figure 2. Network layouts for three examples: a) small scale sewer network, b) medium scale sewer network, c) large 

scale sewer network. 

 

The optimal layouts obtained by Moeini and Afshar (2012 b), shown in Figure 2, is used here to assess the efficiency 

and effectiveness of the CA and HCA method. The small scale sewer network consists of 9 nodes and 12 pipes, the 

medium scale sewer network has 25 nodes and 40 pipes and the large scale sewer network includes 81 nodes and 144 

pipes. All the networks have two treatment plants with fixed elevation located at the bottom corner of the sewer network. 
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The ground elevation of a reference point located at the middle of the upper edge of the area denoted by node 8, 23 and 

77 in small, medium and large scale networks, respectively, is considered 1000 metres. The area is considered to have a 

constant slope of 2% from the reference point to the left and right and toward the bottom edge. The lengths of pipes in 

three networks are considered as 100 meters and the set of commercially available pipe diameters for all the pipes is 

included in the range of 100 mm to 1500 mm with an interval of 50 mm from 100 mm to 1000 mm and an interval of 

100 mm from 1000 mm to 1500 mm. The Manning coefficient is considered as 0.015 and the problem is constrained to 

a maximum and minimum velocity of 6 m/s and 0.75 m/s, maximum and minimum cover depth of 10 m and 2.5 m, and 

maximum and minimum relative flow depth of 0.83 and 0.1, respectively. 

The terms of pipe and manhole construction costs are defined as (Moeini and Afshar, 2012 a,b): 

Kp=10.93e
3.43D

+0.012X
1.53

+0.437X
1.47

D                             (16) 

Kh=41.46hm 

Where, D is the pipe diameter (m), X is the buried depth (m), and hm is the depth of manhole (m). 

These test problems are here solved using CA method of Afshar et al. (2011) and HCA methods and the results are 

presented and compared with other existing methods. 

 

Table 1. Optimal network cost obtained by different methods 

Test Example Model Cost Time (milli second) 

small scale network 

ACOA-TGA  

(Moeini and Afshar, 2012 a) 
23467 - 

CACOA-TGA  

(Moeini and Afshar, 2012 b) 
23467 - 

CA 23811 1.6 

HCA-Discrete 23460 4.7 

HCA-Continuous 23513 3.1 

medium scale network 

ACOA-TGA  

(Moeini and Afshar, 2012 a) 
86204 - 

CACOA-TGA  

(Moeini and Afshar, 2012 b) 
85990 - 

CA 88096 14.1 

HCA-Discrete 85873 46.9 

HCA- Continuous 86678 15.6 

large scale network 

ACOA-TGA  

(Moeini and Afshar, 2012 a) 
365600 - 

CACOA-TGA  

(Moeini and Afshar, 2012 b) 
363922 - 

CA 370486 103.1 

HCA-Discrete 361685 200.0 

HCA- Continuous 367436 54.6 

 

Table 1 compares the optimal network costs and the CPU time required by the CA methods introduced here and those of 

ACOA-TGA (Moeini and Afshar, 2012 a) and CACOA-TGA (Moeini and Afshar, 2012 b) methods using a 2 MHz 

Pentium 4. It can be seen that both HCA methods produce better solutions than CA method in three sewer networks. 

Moreover, the HCA methods result in comparable solutions to the ACOA in small scale network, while with increasing 

the scale of the problem, the HCA methods produce superior solutions than ACOA. Furthermore, the HCA-discrete 

method results in better solution than the existing methods while requiring less than one second CPU time to achieve 

the solutions. It should be noted that ACOA needs much more time than CA methods, because of its mechanism and it is 

one the population based methods. Since the HCA method requires an initial guess for the decision variables of the 

problem, pipe diameters and the nodal cover depths, to start off the solution procedure, a sensitivity analysis is carried 

out here to assess the sensitivity of the final solution to the initial guess. 
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Table 2. Maximum, Minimum and Average solution costs over 10 runs 

  Cost   

Test Example Model Minimum Maximum Average 
Scaled Standard 

Deviation 

small scale network 

ACOA-TGA  

(Moeini and Afshar, 2012 a) 
23467 23467 23467 0.0000 

CACOA-TGA  

(Moeini and Afshar, 2012 b) 
23467 23467 23467 0.0000 

CA 23811 23811 23811 0.0000 

HCA-Discrete 23460 23747 23546 0.0059 

HCA-Continuous 23513 34064 25798 0.1683 

medium scale network 

ACOA-TGA  

(Moeini and Afshar, 2012 a) 
86204 87127 86642 0.0037 

CACOA-TGA  

(Moeini and Afshar, 2012 b) 
85990 86591 86187 0.0020 

CA 88096 88096 88096 0.0000 

HCA-Discrete 85873 86953 86410 0.0052 

HCA- Continuous 86678 87786 87397 0.0038 

large scale network 

ACOA-TGA  

(Moeini and Afshar, 2012 a) 
365600 381484 372605 0.0127 

CACOA-TGA  

(Moeini and Afshar, 2012 b) 
363922 367174 365606 0.0030 

CA 370486 370489 370488 0.0000 

HCA-Discrete 361685 367131 363894 0.0040 

HCA- Continuous 367436 371350 369661 0.0031 

 

Table 2 represents the maximum, minimum and average solution costs over 10 runs using different initial designs along 

with the scaled standard deviation of the solutions defined as the ratio of the standard deviation to the average solution. 

This table emphasizes on the insensitivity of the CA methods to the initial population. 

 

Table 3. Results obtained from HCA method (discrete) for the small scale sewer network 

  Cover Depth (m)  

Pipe D (mm) Upstream Downstream V (m/s) y/d 

1 100 2.50 4.50 1.39 0.57 

2 150 2.50 4.50 1.83 0.58 

3 200 3.40 4.50 2.04 0.67 

4 150 2.50 2.50 1.27 0.56 

5 200 2.50 4.50 2.08 0.50 

6 150 2.50 3.40 1.67 0.82 

7 150 2.50 2.50 1.27 0.56 

8 150 2.50 3.40 1.47 0.50 

9 150 2.50 2.50 1.27 0.56 

10 150 2.50 2.50 1.27 0.56 

11 100 2.50 2.50 1.05 0.73 

12 100 2.50 2.50 1.05 0.73 
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Table 4. Results obtained from HCA method (discrete) for the medium scale sewer network 

  Cover Depth (m)   

 

  Cover Depth (m)   

Pipe D(mm) Upstream Downstream V (m/s) y/d Pipe D(mm) Upstream Downstream V (m/s) y/d 

1 200 2.50 4.50 2.18 0.55 21 150 2.50 2.50 1.27 0.56 

2 150 2.50 2.50 1.38 0.74 22 150 2.50 2.50 1.27 0.56 

3 100 2.50 2.50 1.05 0.73 23 200 2.50 2.50 1.60 0.62 

4 150 2.50 4.50 1.94 0.71 24 200 2.50 2.80 1.79 0.75 

5 350 3.45 4.50 2.92 0.65 25 150 2.50 3.40 1.67 0.82 

6 150 2.50 2.50 1.27 0.56 26 200 2.50 2.50 1.68 0.80 

7 150 2.50 2.50 1.27 0.56 27 200 2.50 2.50 1.60 0.62 

8 150 2.50 2.50 1.27 0.56 28 150 2.50 2.50 1.27 0.56 

9 300 3.17 4.50 2.82 0.73 29 150 2.50 2.50 1.27 0.56 

10 300 3.47 3.45 2.19 0.82 30 150 2.50 2.50 1.27 0.56 

11 150 2.50 3.47 1.69 0.81 31 150 2.50 2.50 1.27 0.56 

12 150 2.50 2.50 1.27 0.56 32 150 2.50 2.50 1.27 0.56 

13 250 2.50 3.17 2.26 0.82 33 150 2.50 2.50 1.38 0.74 

14 200 2.50 3.45 2.03 0.76 34 150 2.50 2.50 1.27 0.56 

15 250 2.80 3.47 2.26 0.82 35 150 2.50 2.50 1.38 0.74 

16 150 2.50 2.50 1.27 0.56 36 150 2.50 2.50 1.27 0.56 

17 250 2.50 2.50 1.92 0.71 37 100 2.50 2.50 1.05 0.73 

18 200 2.50 3.17 1.94 0.79 38 100 2.50 2.50 1.05 0.73 

19 150 2.50 2.50 1.27 0.56 39 100 2.50 2.50 1.05 0.73 

20 200 3.40 2.80 1.41 0.82 40 100 2.50 2.50 1.05 0.73 

 

Table 5. Results obtained from HCA method (discrete) for the large scale sewer network 

  Cover Depth (m)  

 

  Cover Depth (m)  

Pipe D(mm) Upstream Downstream V (m/s) y/d Pipe D(mm) Upstream Downstream V (m/s) y/d 

1 350 4.14 4.50 2.59 0.68 73 200 2.50 2.50 1.52 0.53 

2 300 3.34 4.14 2.61 0.82  

 

74 200 2.50 3.00 1.88 0.82 

3 200 2.50 3.34 1.90 0.62 75 400 3.00 3.17 2.77 0.76 

4 150 2.50 2.50 1.38 0.74  76 150 2.50 2.50 1.27 0.56 

5 100 2.50 2.50 1.05 0.73 

 

77 250 3.00 2.50 1.69 0.80 

6 200 2.50 2.50 1.52 0.53 78 400 4.02 4.37 2.84 0.70 

7 200 2.50 2.50 1.68 0.80 79 150 2.50 2.50 1.27 0.56 

8 200 2.50 4.50 2.38 0.81 80 150 2.50 2.50 1.27 0.56 

9 500 3.93 4.50 3.52 0.82 81 150 2.50 2.50 1.27 0.56 

10 150 2.50 4.14 1.60 0.47 82 150 2.50 2.50 1.27 0.56 

11 300 3.88 3.34 1.88 0.82 83 350 2.71 3.00 2.62 0.82 

12 150 2.50 2.50 1.27 0.56 84 250 2.50 3.17 2.26 0.82 

13 150 2.50 2.50 1.27 0.56 85 250 3.00 2.50 1.69 0.80 

14 150 2.50 2.50 1.27 0.56 86 150 2.50 3.00 1.39 0.52 

15 150 2.50 2.50 1.27 0.56 87 300 2.50 4.02 2.93 0.82 

16 150 2.50 2.50 1.27 0.56 88 200 2.50 2.50 1.65 0.70 

17 550 3.78 4.50 3.86 0.82 89 150 2.50 2.50 1.27 0.56 

18 200 2.50 3.93 2.05 0.58 90 200 2.50 3.00 1.88 0.82 

19 150 2.50 2.50 1.27 0.56 91 250 3.00 2.71 1.81 0.82 

20 200 2.50 3.88 2.04 0.58 92 150 2.50 2.50 1.27 0.56 

21 150 2.50 2.50 1.27 0.56 93 150 2.50 3.00 1.39 0.52 

22 150 2.50 3.40 1.67 0.82 94 200 2.50 3.00 1.88 0.82 

23 200 3.40 3.89 1.88 0.82 95 250 2.50 4.02 2.41 0.58 

24 250 3.89 3.60 1.81 0.82 96 300 2.50 2.50 2.20 0.78 

25 550 3.60 3.78 3.43 0.76 97 150 2.50 2.50 1.27 0.56 

26 500 3.71 3.93 3.26 0.82 98 200 2.50 2.50 1.65 0.70 

27 150 2.50 2.50 1.27 0.56 99 150 2.50 3.00 1.39 0.52 

28 200 2.50 3.88 1.77 0.78 100 300 2.5 2.71 2.30 0.74 

29 150 2.50 2.50 1.27 0.56 101 250 2.50 2.50 1.92 0.71 
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30 150 2.50 2.50 1.27 0.56 102 200 2.50 3.00 1.88 0.82 

31 150 2.50 3.40 1.47 0.50 103 150 2.50 2.50 1.27 0.56 

32 150 2.50 3.89 1.56 0.48 104 150 2.50 2.50 1.27 0.56 

33 550 4.00 3.60 2.95 0.77 105 200 2.50 2.50 1.65 0.70 

34 300 2.50 3.78 2.71 0.64 106 150 2.50 2.50 1.27 0.56 

35 500 4.32 3.71 2.59 0.82 107 150 2.50 2.50 1.27 0.56 

36 150 2.50 4.32 1.63 0.46 108 250 2.50 2.50 1.92 0.71 

37 200 2.50 2.50 1.65 0.70 109 150 2.50 2.50 1.27 0.56 

38 150 2.50 2.50 1.27 0.56 110 150 2.50 2.50 1.27 0.56 

39 200 2.50 2.50 1.52 0.53 111 200 2.50 2.50 1.60 0.62 

40 200 2.50 3.00 1.88 0.82 112 200 2.50 2.50 1.68 0.80 

41 250 3.00 4.00 2.31 0.65 113 250 2.50 2.50 1.94 0.76 

42 150 2.50 2.50 1.27 0.56 114 150 2.50 2.50 1.27 0.56 

43 300 2.50 3.71 2.60 0.58 115 200 2.50 2.50 1.52 0.53 

44 500 5.08 4.32 2.44 0.82 116 200 2.50 2.50 1.68 0.80 

45 150 2.50 2.50 1.27 0.56 117 200 2.50 2.50 1.68 0.80 

46 150 2.50 2.50 1.27 0.56 118 200 2.50 2.50 1.68 0.80 

47 150 2.50 2.50 1.27 0.56 

 

119 200 2.50 2.50 1.60 0.62 

48 150 2.50 2.50 1.27 0.56 120 150 2.50 2.50 1.27 0.56 

49 150 2.50 3.00 1.39 0.52 121 150 2.50 2.50 1.27 0.56 

50 450 3.09 4.00 3.48 0.82 122 200 2.50 2.50 1.68 0.80 

51 300 2.83 2.50 2.00 0.73 123 150 2.50 2.50 1.27 0.56 

52 150 2.50 2.50 1.27 0.56 124 150 2.50 2.50 1.27 0.56 

53 200 2.50 5.08 2.54 0.76 125 150 2.50 2.50 1.27 0.56 

54 200 2.50 2.50 1.65 0.70 126 150 2.50 2.50 1.27 0.56 

55 150 2.50 2.50 1.27 0.56 127 150 2.50 2.50 1.27 0.56 

56 150 2.50 3.40 1.67 0.82 

 

128 150 2.50 2.50 1.27 0.56 

57 250 3.40 2.50 1.42 0.70 129 150 2.50 2.50 1.38 0.74 

58 250 2.50 3.09 2.17 0.68 130 150 2.50 2.50 1.38 0.74 

59 150 2.50 2.83 1.35 0.53 131 150 2.50 2.50 1.38 0.74 

60 300 2.50 2.50 2.07 0.60 132 150 2.50 2.50 1.27 0.56 

61 400 4.37 5.08 3.11 0.82 133 150 2.50 2.50 1.38 0.74 

62 150 2.50 2.50 1.27 0.56 134 150 2.50 2.50 1.38 0.74 

63 150 2.50 2.50 1.27 0.56 135 150 2.50 2.50 1.38 0.74 

64 150 2.50 2.50 1.27 0.56 136 150 2.50 2.50 1.27 0.56 

65 150 2.50 3.40 1.47 0.50 137 100 2.50 2.50 1.05 0.73 

66 150 2.50 2.50 1.27 0.56 138 100 2.50 2.50 1.05 0.73 

67 450 3.17 3.09 2.83 0.82 139 100 2.50 2.50 1.05 0.73 

68 250 2.50 2.83 2.11 0.82 140 100 2.50 2.50 1.05 0.73 

69 150 2.50 2.50 1.27 0.56 141 100 2.50 2.50 1.05 0.73 

70 200 2.50 4.37 2.34 0.82 142 100 2.50 2.50 1.05 0.73 

71 200 2.50 2.50 1.65 0.70 143 100 2.50 2.50 1.05 0.73 

72 150 2.50 2.50 1.27 0.56 144 100 2.50 2.50 1.05 0.73 

 

Details of the optimal solution obtained by the HCA-discrete method for three sewer networks are also shown in Table 

3, 4, and 5, respectively. 

6. Concluding Remarks 

In this paper, Hybrid Cellular Automata approach was used for the optimal solution of sewer network design problems. 

The problem was decomposed to two stages with considering the nodal cover depths and pipe diameters as decision 

variables. In the first stage, nodal cover depths were calculated assuming fixed values for the pipe diameters, while in 

the second stage, the pipe diameters were determined in two approaches of continuous and discrete with nodal cover 

depths of the first stage. Two stages were solved iteratively until the convergence was achieved. The HCA methods 

were used to solve three benchmark examples in the literature and the comparison of results with two versions of Ant 

Colony Optimization Algorithm indicated the ability and efficiency of the HCA methods to produce better results 

comparable to those of heuristic search methods with much higher efficiency. 
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