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Abstract 

There are several misconceptions when interpreting the values of the coefficient of determination, R2, in simple linear 

regression. R2 is heavily dependent on sample size n and the type of data being analyzed but becomes insignificant 

when working with very large sample sizes. In this paper, we comment on these observations and develop a relationship 

between R2, n, and the level of significance α, for relatively small sample sizes. In addition, this paper provides a 

simplified version of the relationship between R2 and n, by comparing the standard deviation of the dependent variable, 

Sy, to the standard error of the estimate, Se. This relationship will serve as a safe lower bound to the values of R2. 

Computational experiments are performed to confirm the results from both models. Even though the focus of the paper 

is on simple linear regression, we present the groundwork for expanding our two models to the multiple regression case. 

Keywords: linear regression; coefficient of determination; statistical significance 

1. Introduction 

The purpose of this work is to offer a better understanding of the connection between the different statistics used in 

linear regression, and to provide additional guidelines for students who do not have a strong analytical background. 

There are many issues associated with focusing on the R2 to describe the significance of a relationship between 

variables. Can the same value of R2 have a different interpretation for two different sets of data? R2 is not only 

interpreted differently qualitatively by looking at different types of data, but it is heavily dependent on the sample size, 

n. R2 for a smaller n holds a different meaning than the same R2 for a larger n. In addition, a student’s lack of 

understanding the hypothesis testing method to further deal with that significance puts more pressure on the need of 

using the values of R2 as a stand-alone coefficient. Moreover, the impact of outliers is even more significant when 

dealing with a smaller sample size than a larger sample size. 

The value of R2 cannot stand alone as a coefficient, and it needs to be explained by taking into consideration the size of 

the sample, and the type of data we are analyzing. Since the type of data is more difficult to quantify, this paper focuses 

on analyzing relatively small sample sizes and their impact on explaining the behavior of R2. The target audience of this 

research are the inexperienced students who lack the strong analytical background; hence our effort to steer away from 

the vague and complex mathematical models. Furthermore, we will not be dealing with the application of big data 

analysis and predictive analytics, since statistical significance is not the same thing as practical relevance. We know that 

with a large enough sample size, any relationship, no matter how small, will be statistically significant. Our approach 

will be to simply the concepts for relatively small sample sizes, before having the students deal with the more complex 

science of big data. 

On the other hand, hypothesis testing can be done for any population parameter, including the ρ2 (coefficient of 

determination for the whole population), by using the sample statistic point estimate R2. However, our work is not to 

present a new type of testing for a new variable, but to simplify and explain the interpretations and significance of how 

to read the results, especially in today’s ever-growing world of analytics. This paper serves as a guiding tool to students 

who lack the necessary analytical and programming knowledge and skills, yet they use statistical analysis for decision 

making. 

We hope that by relating these different concepts together in a clear and simple way, we will be helping this large 

audience get closer to the world of analytics. Therefore, our focus here, is the small sample size data, and how the 
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different values of R2 connect to the concept of “significance”. In order to present this concept, we have developed a 

new relationship between the R2, n, and the level of significance α, for relatively small sample sizes. We are also 

providing a simplified model of the relationship between R2 and n; which will serve as a safe lower bound to the values 

of R2.  

2. Prior Literature 

Regression analysis is widely used in forecasting and prediction, where one tries to find which independent variables 

are better predictors to a dependent variable. Moreover, it is a science that reaches a wide domain of applications 

including machine learning. Despite recognizing the more complex form and applications of regression analysis, this 

paper focuses on the simplest form, simple linear regression, which tries to predict a variable by only using one 

independent variable in a linear relationship.  

Regression analysis is a skill needed in every domain today. And with the ever-growing world of analytics, simple linear 

regression is usually the first encounter with the topic. It is the foundation and the steppingstone to embarking on the 

more complex, vast world of regression analysis.  

We will start by briefly reviewing the history and the applications that led to the work in regression analysis, then we 

will discuss the literature related to our specific interest, and last but not least, we will highlight our work and 

contribution to the field.  

2.1 History and Application 

The earliest form of regression was the method of least squares (Legendre 1805), which is an algebraic technique for 

fitting linear equations to data. Gauss (1809) claimed that he was the first one to come up with the least squares work, 

where he took it beyond Legendre and succeeded in connecting the method with the principles of probability 

and normal distribution.  

One major application of regression is in the field of behavioral and psychological sciences. Bartko et al. (1988) 

focused on the importance of statistical power accompanied by nomograms for determining sample size and statistical 

power for the Student’s t-tests; whereas Cohen (1992) and Erdfelder et al. (1996) addressed the continued neglect of 

statistical power analysis in research in the behavioral sciences by providing a convenient, although not comprehensive 

presentation of required sample sizes. Effect-size indexes and conventional values for these are given for operationally 

defined small, medium, and large effects.  

Furthermore, reliability coefficients often take the form of intraclass correlation coefficients. Shrout and Fleiss (1979) 

provided guidelines for choosing among 6 different forms of the intraclass correlation for reliability studies in 

which n targets are rated by k judges. Relevant to the choice of the coefficient are the appropriate statistical model for 

the reliability study and the applications to be made of the reliability results. Confidence intervals for each of the forms 

are reviewed. Although intraclass correlation coefficients (ICCs) are commonly used in behavioral measurement, 

psychometrics, and behavioral genetics, procedures available for forming inferences about ICCs are not widely known. 

McGraw and Wong (1996) expanded the work and developed procedures for calculating confidence intervals and 

conducting tests on ICCs using data from one-way and two-way random and mixed-effect analysis of variance models.  

2.2 Simple Linear Regression, R2, and the Sample Size n 

If we would like to focus on specific aspects of the simple linear regression model, such as the coefficient of determination, 

or the correlation coefficient r, we also find an abundant of work, dating back to (Fisher 1915), and not limited to (Bland 

and Altman 1996; Rovine and Von Eye 1997; Rodgers and Nicewander 1988) who all addressed different aspects of the 

correlation coefficient and its impact on interpreting the linear model. Fisher focused on the frequency distribution of the 

values of the correlation coefficient in samples from large populations, whereas Rodgers and Nicewander presented 

thirteen different formulas, each of which represents a different computational and conceptual definition of the 

correlation coefficient, r. Each formula suggests a different way of thinking about this index, from algebraic, geometric, 

and trigonometric settings. Rovine and Von Eye expanded on this research by presenting a fourteenth way. 

Focusing on the R2, we found that Cramer (1987) derived easily computable expressions for the mean and variance of 

R2 in the standard linear regression model with fixed regressors. He theorized that due to the high dispersion of R2 and 

the adjusted R2, both coefficients should not be quoted for samples that have less than fifty observations. Mocksony 

(1999) went further in his work and challenged the notion that even though few statistical measures are as highly 

respected by social scientists as is the coefficient of determination, the common interpretation of R2 as a measure of 

“explanatory power” is misleading. Filho et al. (2011) analyzed the R2 statistic using a non-technical approach in order 

to provide an intuitive understanding of its major shortcomings. Their research was based on King’s (1991) work who 

in turn argued that the R2 is highly misused as a measure of the influence of X on Y. Hagquist and Stenbeck (1998) 

attempted to clear some of the debate surrounding the goodness of fit measures, as well as the test statistics and 
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descriptive measures used to make decisions on these debates including the R2. 

On a different note, sample sizes have also been a major topic of research when regression is involved. To mention a 

few, Frits and MacKinnon (2007) presented the necessary sample sizes for six of the most common and most 

recommended tests of mediation for various combinations of parameters, to provide a guide for researchers when 

designing studies. Hsieh et al. (1998) developed sample size formulae for comparing means or for comparing 

proportions in order to calculate the required sample size for a simple logistic regression model. One can then adjust the 

required sample size for a multiple logistic regression model by a variance inflation factor. Similarly, this method can be 

used to calculate the sample size for linear regression models. Maas and Hox (2005) used a simulation study to 

determine the influence of different sample sizes at the group level based on the accuracy of the estimates (regression 

coefficients and variances) and their standard errors. The results show that only a small sample size at level two 

(meaning a sample of 50 or less) leads to biased estimates of the second-level standard errors. 

In addition, there has been extensive work in the Biostatistics area with regard to correlation and simple linear 

regression, and on the use of relatively small sample sizes. An example of this is the work done by Bewick at al. (2003) 

who discussed and illustrated the common misuses of the correlation coefficient and the linear regression equation. 

Tests and confidence intervals for the population parameters were described, and failures of the underlying assumptions 

were highlighted. Filho et al. (2013) provided a non-technical introduction to the p value statistic. Its main purpose is to 

help researchers make sense of the appropriate role of the p value statistic in empirical political science research.  

2.3 Our Work and Contribution 

In summary, most of the literature focuses on techniques involving the effect size, and the statistical power β. In this 

paper, we simplify the use of the regression coefficients and their interpretations by using just the sample size n and the 

level of significance . Hence, our contribution to the literature is a straightforward approach to interpret R2 in simple 

linear regression for relatively small sample sizes.  

Even though our focus is on the case of simple linear regression, we will be addressing the possibility of extending the 

research into multiple regression. We will need to rely on literature that deals with minimum required sample sizes 

when we introduce multiple independent predictors. Knofczynski and Mundfrom (2007) addressed the issue of 

minimum required sample size needed by using Monte Carlo simulation. Models with varying numbers of independent 

variables were examined and minimum sample sizes were determined for multiple scenarios at each number of 

independent variables. The scenarios arrive from varying the levels of correlations between the criterion variable and 

predictor variables as well as among predictor variables. 

3. Model Development and Solution Procedure 

We will start this section by introducing the necessary variables and coefficients used in simple linear regression. We 

will then break down the work into two different models. The first deals with introducing a new relationship between 

the coefficient of determination, R2, the sample size n and the level of significance . The second model will provide a 

simplified version of the relationship between R2 and n, by comparing the standard deviation of the dependent variable, 

Sy, to the standard error of the estimate, Se. This relationship will serve as a safe lower bound to the values of R2. 

Furthermore, we will introduce the framework for expanding both models into the multiple regression cases.  

Hence, our contribution to the literature is a straightforward approach to interpret R2, which is defined as the ratio of the 

explained variation to the total variation: 

𝑅2 = 𝑆𝑆𝑅/𝑆𝑆𝑇 = 1 − (𝑆𝑆𝐸/𝑆𝑆𝑇) ,     

where: 

𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅, 

𝑆𝑆𝑇 = ∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1 , 𝑆𝑆𝐸 = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1 , 𝑆𝑆𝑅 = ∑ (�̂�𝑖 − �̅�)
2𝑛

𝑖=1 ,  

𝑦𝑖 = 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, �̅� = ∑ 𝑦𝑖
𝑛
𝑖 /𝑛, and 

𝑦�̂� = 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒. 

R2 is used to explain the variability of the dependent variable by considering the variability of the independent variable. 

Thus, 0 ≤ R2 ≤ 1.  

3.1 Model 1: Significant Values of R2 - Simple Linear Regression Case  

To deal with statistical significance, we have to perform hypothesis testing. A statistical hypothesis test is a method of 

statistical inference. Hypothesis testing is used in determining what outcomes would lead to a rejection of the null 

hypothesis for a pre-specified level of significance. In the case of the simple linear regression model, this is obtained by 

testing the slope of the best fit line. The null hypothesis considers that the population slope is equal to zero, indicating 
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that there is no linear relationship between the two variables, whereas the alternative hypothesis claims that the slope is 

significant enough to show that there is a linear relationship between these two variables.  

𝐻0: 𝛽1 = 0 

𝐻1: 𝛽1 ≠ 0 

Given a specific level of significance, and the appropriate degrees of freedom (n – 2), we can calculate the significant 

Fα value, and compare it to test statistic F.  

𝐹 = 𝑀𝑆𝑅/𝑀𝑆𝐸 = (𝑆𝑆𝑅)/(𝑆𝑆𝐸/(𝑛 − 2)) 

For the simple linear regression case, k = 1 and n ≥ 3. Hence the relationship between the test statistic F and the R2 is 

𝐹 = [(𝑛 − 2)[𝑅2/(1 − 𝑅2)]               (1) 

F is an increasing function of both the sample size n and the coefficient of determination R2.  

Figure 1 shows how F behaves as a function of n and R2.  In this graph, we consider the case of n between 0 and 100, 

and R2 between 0 and 0.5.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Shape of F as a function of n and R2 

If we consider that only one of them is changing, while the other remains constant, we will obtain the following:  

 If n stays the same, and R2 increases from 𝑅1
2 to 𝑅2

2, F then increases by a factor of  

(𝑛 − 2)[(𝑅2
2/(1 − 𝑅2

2)) − (𝑅1
2/(1 − 𝑅1

2))] 

 If on the other hand, n increases from n1 to n2, but R2 stays the same, F will increase by a factor of (𝑛2 −
𝑛1)[(𝑅

2/(1 − 𝑅2))] 

 Special cases:  

o 𝑅2 = 0 𝐹 = 0 

o 𝑅2 = 0   𝐹 = 𝑛 − 2 

o 𝑅2 = 1 𝐹 =   

o 0  𝑅2  0   0   𝐹  𝑛 − 2 

o 0    𝑅2   1  𝑛 − 2   𝐹    
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 The challenge is when both n and R2 are changing simultaneously, and how these changes impact the behavior of F. 

Hence, the incentive of this paper is to find a simple and useful relationship between R2 and n, in order to address 

this three-way relationship.  

If the value of the F statistic is at least equal to the F, the null hypothesis is rejected, and the linear model is considered 

to be significant. Solving for R2 in (1), we obtain: 

𝑅2 = 𝐹/[𝐹 + (𝑛 − 2)]          (2)  

Equivalently, we can reject the null hypothesis above, if R2 is at least equal to a critical value R
2: 

𝑅𝛼
2 = 𝐹𝛼/[𝐹𝛼 + (𝑛 − 2)]         (3) 

Table 1 below displays the values of R
2 for three values of . It is worth noting here that we are not referring to the 

adjusted Ra
2 value used when dealing with multiple regression analysis, but instead we are examining the critical R

2 

values that would render the model significant. The table was developed by considering the case of n between 3 and 100, 

with an increment of 1, and  between 0.001 and 0.2, with an increment of 0.001; which resulted in a table with 98 

rows and 200 columns. For the purpose of size and format, below is a summary of these results for three of the most 

frequently used values of .  

Table 1. Critical R
2 for specific values of  

 𝑹𝜶
𝟐

 

n α = 0.01 α = 0.05 α = 0.1 

3 0.9998 0.9939 0.9756 

4 0.9801 0.9025 0.81 

5 0.9192 0.7715 0.6487 

6 0.8413 0.6584 0.5319 

7 0.7648 0.5693 0.4482 

8 0.6962 0.4995 0.3863 

9 0.6363 0.4441 0.339 

10 0.5847 0.3993 0.3018 

11 0.54 0.3625 0.2719 

12 0.5012 0.3318 0.2473 

13 0.4673 0.3058 0.2268 

14 0.4375 0.2835 0.2094 

15 0.4111 0.2642 0.1944 

16 0.3877 0.2474 0.1814 

17 0.3667 0.2325 0.1701 

18 0.3478 0.2193 0.1601 

19 0.3308 0.2076 0.1512 

20 0.3153 0.197 0.1432 

21 0.3011 0.1874 0.136 

22 0.2882 0.1787 0.1295 

23 0.2763 0.1708 0.1236 

24 0.2654 0.1636 0.1182 

25 0.2553 0.1569 0.1133 

26 0.2459 0.1508 0.1088 

27 0.2372 0.1451 0.1046 

28 0.229 0.1398 0.1007 

29 0.2214 0.1349 0.0971 

30 0.2143 0.1304 0.0937 

31 0.2076 0.1261 0.0906 

32 0.2014 0.1221 0.0877 

33 0.1955 0.1184 0.0849 

34 0.1899 0.1148 0.0823 

35 0.1846 0.1115 0.0799 

36 0.1797 0.1084 0.0776 

37 0.175 0.1054 0.0755 

38 0.1705 0.1026 0.0734 

39 0.1662 0.0999 0.0715 

40 0.1622 0.0974 0.0696 

41 0.1583 0.095 0.0679 

42 0.1546 0.0927 0.0662 

43 0.1511 0.0905 0.0647 

44 0.1478 0.0884 0.0632 

45 0.1446 0.0865 0.0617 

46 0.1415 0.0846 0.0603 

47 0.1385 0.0827 0.059 

48 0.1357 0.081 0.0578 

49 0.133 0.0793 0.0566 
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50 0.1304 0.0777 0.0554 

51 0.1279 0.0762 0.0543 

52 0.1255 0.0747 0.0532 

53 0.1232 0.0733 0.0522 

54 0.1209 0.0719 0.0512 

55 0.1188 0.0706 0.0503 

56 0.1167 0.0693 0.0494 

57 0.1147 0.0681 0.0485 

58 0.1127 0.0669 0.0476 

59 0.1108 0.0658 0.0468 

60 0.109 0.0647 0.046 

61 0.1073 0.0636 0.0452 

62 0.1056 0.0626 0.0445 

63 0.1039 0.0616 0.0438 

64 0.1023 0.0606 0.0431 

65 0.1008 0.0597 0.0424 

66 0.0993 0.0587 0.0418 

67 0.0978 0.0579 0.0411 

68 0.0964 0.057 0.0405 

69 0.095 0.0562 0.0399 

70 0.0937 0.0554 0.0393 

71 0.0924 0.0546 0.0388 

72 0.0911 0.0538 0.0382 

73 0.0899 0.0531 0.0377 

74 0.0887 0.0524 0.0372 

75 0.0875 0.0517 0.0367 

76 0.0864 0.051 0.0362 

77 0.0853 0.0503 0.0357 

78 0.0842 0.0497 0.0352 

79 0.0831 0.049 0.0348 

80 0.0821 0.0484 0.0344 

81 0.0811 0.0478 0.0339 

82 0.0801 0.0472 0.0335 

83 0.0792 0.0466 0.0331 

84 0.0782 0.0461 0.0327 

85 0.0773 0.0455 0.0323 

86 0.0764 0.045 0.0319 

87 0.0756 0.0445 0.0316 

88 0.0747 0.044 0.0312 

89 0.0739 0.0435 0.0308 

90 0.0731 0.043 0.0305 

91 0.0723 0.0425 0.0302 

92 0.0715 0.0421 0.0298 

93 0.0707 0.0416 0.0295 

94 0.07 0.0412 0.0292 

95 0.0693 0.0407 0.0289 

96 0.0685 0.0403 0.0286 

97 0.0678 0.0399 0.0283 

98 0.0672 0.0395 0.028 

99 0.0665 0.0391 0.0277 

100 0.0658 0.0387 0.0274 

Overall, for the conclusion of testing the slope and falling into the rejection area (for a particular α and n), R2 needs to 

be equal or higher to a critical value R
2. 

We can address this from a different perspective. For any given level of significance α, we can calculate how small the 

sample size needs to be to provide significant values of R2. Figure 2 shows these values of n for the three specific α 

values mentioned above. As a result, for any value of R2 that we obtain from running our simple linear regression model, 

we can compare the sample size used to a critical sample size n. If the sample size n is at least equal to a critical value 

n, the model will be considered significant. For example, if the data provided R2 = 0.30, the linear model is considered 

significant at level α = 0.05, if the sample size is 𝑛 ≥ 𝑛0 05 = 13, found in Figure 2. 
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Figure 2. Critical sample sizes for certain  values 

This kind of work has been heavily investigated in areas such as biostatistics and other health related fields; however, 

the work is usually too complex for first time statistics students especially in areas such as business. In addition, the 

work involves concepts such as the power effect, and gamma distribution functions, which is way beyond the scope of 

our targeted audience.  

3.1.1 Introducing the Simplified New Model 

The main contribution of this research is to find a simple and useful relationship between R2 and n and present it in such 

a way that any first-time user of basic statistics can have the ability to understand how to interpret statistical results such 

as the R2 and what to avoid in relatively small sample sizes.  

We start by defining relatively small sample sizes for any n value smaller than a hundred elements. We will be looking 

at the relationship of the significant R2 for different values of . Since  is a continuous parameter, we will use the 

range 0 <   0.2. We can extend the work where  can go all the way to 0.5 (covering the whole half of the normal 

distribution function). Since we do not usually deal with level of significance smaller than 0.2, this range would be 

adequate enough, keeping in mind, that our work can easily be extended to cover the whole range of  up to 0.5. In 

addition, we will allow  to increase by an increment of 0.001, which gives us 200 different relationships between the 

R2 and n. Hence, we consider 3  n  100 and 0 <   0.2 with an increment of 0.001. 

We used R programming to generate all the critical values of R2 for the 200 different  values, using the range 3  n  

100 for each . This led us to 200 power functions that all fit the following form:  

𝑅2 = 𝐶1𝑛
𝐶2.  

3.1.2 Results of Model 1 

Figure 3 shows the power functions of R2 as a function of n and . As we can see, R2 displays a similar trait with 

regards to the sample size n, for all the different values of . 
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Figure 3. R2 as a function of n and ⍺ 

We found that this type of relationship between the R2, n, and the , is true even if we extend the size of n and increase 

the interval of values of . However, the values of the coefficients C1 and C2 will change accordingly. Thus, the 

obtained 200 different values of C1 and C2 for each individual  are for the specific ranges of n and , mentioned 

above.  

Table 2 shows a summary of the results of the coefficients C1 and C2 for selected values of . 

Table 2. Values of the power functions’ coefficients C1 and C2 

α C1 C2 

0.001 4.3956 -0.791 

0.01 4.3617 -0.900 

0.02 4.2094 -0.939 

0.03 4.0659 -0.963 

0.04 3.9339 -0.980 

0.05 3.8102 -0.995 

0.1 3.2854 -1.042 

0.15 2.8528 -1.072 

0.2 2.4798 -1.093 

We then ran regression models for the 200 values of each coefficient as a function of , and we obtained the following 

two models: 

𝑪𝟏 = (𝟒 𝟒𝟑𝟏𝟕)𝐞𝐱𝐩 (−𝟐 𝟗𝟑𝟖𝛂)        (4) 

𝑪𝟐 = (−𝟎 𝟎𝟔𝟑) 𝐥𝐧() − 𝟏 𝟏𝟖𝟖𝟏        (5) 

For the interval of  values considered, C1 is always positive and C2 is always negative: 

C1 > 0 and C2 < 0 

Thus, R2 can be expressed as a function of n and  as follows:  

𝑹𝟐 = [(𝟒 𝟒𝟑𝟏𝟕)𝐞𝐱𝐩 (−𝟐 𝟗𝟑𝟖𝛂)](𝒏)[(−𝟎 𝟎𝟔𝟑) 𝐥𝐧()−(𝟏 𝟏𝟖𝟖𝟏)]    (6) 

Figures 4 and 5 show the relationships between C1 and C2 and . 
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Figure 4. C1 as a function of  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. C2 as a function of  

In addition, this relationship determines the starting point of n for each alpha value, by making sure that R2 obtained is 

less than or equal to one. Therefore, given a level of significance , the developed model allows us to specify the lower 

bound of the sample size, and based on that, the lower bound of a significant R2. This determination can be 

accomplished by making sure that the starting point of n will provide a value of R2 that is less or equal to one, for the 

given . This is crucial, not only because it gives us a direct and straightforward relationship of R2 as a function of two 

known parameters, n and , but it also specifies the starting point of how big the sample size needs to be for every level 

of significance . 

3.1.3 Model 1 Expansion: Significant Values of R2 - Multiple Regression Case 

As we have mentioned before, this paper addresses the simple linear regression case. However, we have also included a 

glimpse of the future work we will be attempting to do when dealing with multiple dependent variables.  

Equation (1) can be extended to the multiple regression case as follows: 

𝐹 = [(𝑛 − 𝑘 − 1/𝑘)(𝑅2/(1 − 𝑅2))] , 

where 0 ≤ 𝑅2 ≤ 1, and 0 ≤ 𝐹   . 

Summary of the critical values: 

o 𝑅2 = 0 𝐹 = 0 

o 𝑅2 = 0   𝐹 = (𝑛 − 𝑘 − 1)/𝑘 

o 𝑅2 = 1 𝐹 =   

y = (4.4317)exp(−2.938α) 
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Even though the above analysis can be extended to multiple regression cases where k is the number of independent 

variables, the use of R2 and its interpretation is not as reliable.  

In addition, the complexity of analyzing all the issues in multiple regression is beyond the scope of this paper and its 

targeted audience. Furthermore, when working with small samples, it is not advisable to keep adding predictors, as the 

gap between the R2 and the adjusted Ra
2 will become more and more significant.  

Table 3 shows the values of R2, for a multiple regression model with a particular alpha ( = 0.1) and different cases of 

independent variables k. The calculation was based on the assumption that with each additional independent variable, 

the sample size needs to be at least 50 + (8k). We realize that there are different relationships between the sample size 

and the number of independent variables, and we are not advocating that the one mentioned above is better or more 

accurate, but we simply chose it to show how the values of R2 would look, given an n and a k (for one particular  

value). 

Table 3. Critical R2 values  

 

n 
 

k  

1 2 3 

58 0.5285 
  

59 0.5241 
  

60 0.5198 
  

61 0.5156 
  

62 0.5114 
  

63 0.5073 
  

64 0.5033 
  

65 0.4993 
  

66 0.4954 0.2313 
 

67 0.4916 0.2285 
 

68 0.4878 0.2258 
 

69 0.4841 0.2231 
 

70 0.4804 0.2206 
 

71 0.4768 0.218 
 

72 0.4732 0.2155 
 

73 0.4697 0.2131 
 

74 0.4663 0.2108 0.1808 

75 0.4628 0.2084 0.1787 

80 0.4465 0.1976 0.1689 

90 0.4171 0.179 0.1522 

100 0.3914 0.1636 0.1386 

 

3.2 Model 2: Unexplained Variability Vs Total Variability – Simple Linear Regression 

We will now look at the relationship between the standard deviation of the dependent variable y (Sy) and the standard 

error of the estimate (Se): 

𝑆𝑒 = 𝑆𝑦√((𝑛 − 1)/(𝑛 − 2)) ∗ (1 − 𝑅
2)  where 𝑆𝑒 = √(𝑆𝑆𝐸/(𝑛 − 2))  , 𝑆𝑦 = √(𝑆𝑆𝑇/(𝑛 − 1))  and 𝑅2 = 1 −

(𝑆𝑆𝐸/𝑆𝑆𝑇). 

One way to look at whether the model (independent variable x) can contribute more to explaining the variability of y is 

by comparing the standard error of the estimate Se to the standard deviation of the y variable, Sy.  

𝑆𝑆𝐸 ≤ 𝑆𝑆𝑇  (𝑆𝑆𝐸/(𝑛 − 2)) ∗ ((𝑛 − 2)/(𝑛 − 1)) ≤ (𝑆𝑆𝑇/(𝑛 − 1)) 
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 𝑆𝑒/𝑆𝑦 ≤ √((𝑛 − 1)/(𝑛 − 2)) . 

Since n  3, and Se  0, the above inequality becomes: 

0 ≤ 𝑆𝑒/𝑆𝑦 ≤ √2. 

This shows that the standard error of the estimate, Se, can actually be bigger than the standard deviation of the 

dependent variable, Sy. But since we are dealing with significant models, we would like the independent variable to be 

able to explain better the variability of y, rather than looking just at the variability of y on its own; Se will then be 

smaller than Sy. Hence the amount √((𝑛 − 1)/(𝑛 − 2))(1 − 𝑅2) would be less than one.  

This will result in the following:  

𝑆𝑒/𝑆𝑦 = √((𝑛 − 1)/(𝑛 − 2)) ∗ (1 − 𝑅
2)  1 

𝑦𝑖𝑒𝑙𝑑𝑠
→   √((𝑛 − 1)/(𝑛 − 2)) ∗ (1 − 𝑅2)  1 

 ((𝑛 − 1)/(𝑛 − 2)) ∗ (1 − 𝑅2)  1
𝑦𝑖𝑒𝑙𝑑𝑠
→   (𝑛 − 1) ∗ (1 − 𝑅2)  𝑛 − 2

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑅2(−𝑛 + 1)  −1 ,  

which will give us the final simplified lower bound result of 

𝑅2 > 1/(𝑛 − 1).          (7) 

Even though this is a very safe lower bound to the actual significance values of R2, the interesting part of this 

relationship is that it is independent of alpha. Hence, these lower bound values will always be lower than any of the 

significant R2 regardless of what alpha we are considering. We double checked these results with all the significant R2 

for all 200 values of . 

Next, we compared these lower bounds to the significant R2 we obtained from our equation (6), and we confirmed that 

they are also lower than any values of R2 for any alpha. 

3.2.1  Results of Model 2 

Table 4 shows an example of the results by looking at a particular  = 0.05. The first column displays the values of the 

critical R2 obtained from the critical test statistic F relationship, the second column contains the critical values from 

equation (6), and the third column contains the lower bound R2 values from equation (7). 

Table 4. Comparing all the different critical R2 

 
 

 = 0.05 
 n Critical R

2
 (using F) R

2 
from (6)  Lower bound R

2
 from (7) 

5 0.7715 0.7660 0.2500 
6 0.6584 0.6384 0.2000 
7 0.5693 0.5473 0.1667 
8 0.4995 0.4789 0.1429 
9 0.4441 0.4257 0.1250 

10 0.3993 0.3832 0.1111 
11 0.3625 0.3484 0.1000 
12 0.3318 0.3194 0.0909 
13 0.3058 0.2948 0.0833 
14 0.2835 0.2738 0.0769 
15 0.2642 0.2555 0.0714 
16 0.2474 0.2396 0.0667 
17 0.2325 0.2255 0.0625 
18 0.2193 0.2130 0.0588 
19 0.2076 0.2018 0.0556 
20 0.197 0.1917 0.0526 
30 0.1304 0.1278 0.0345 
40 0.0974 0.0959 0.0256 
50 0.0777 0.0767 0.0204 
60 0.0647 0.0639 0.0169 
70 0.0554 0.0548 0.0145 
80 0.0484 0.0480 0.0127 
90 0.043 0.0426 0.0112 
100 0.0387 0.0384 0.0101 

We notice that the error between the values obtained from the critical test statistic F relationship and equation (6) values 

gets smaller and smaller as n increases. In addition, as mentioned before, equation (6) dictates the starting value of n. So, 

for this example, we see that n should be greater than or equal to 5. 
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Figure 6 shows all the boundaries of R2, the invalid area, the valid but insignificant area, and the significant area. The 

invalid one is the area below equation (7) lower bound values (grey area). The valid but insignificant area is the one 

between the lower bound graph and equation (6) values (orange area). Lastly, the significant area is the one above the 

significant curve depicted by equation (6) results (the rest of the graph).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Boundaries of R2 

3.2.2 Model 2 expansion: Unexplained Variability vs Total Variability – Multiple Regression 

As we have mentioned above, an attempt of dealing with multiple regression will be considered in future work. Below 

we look at the lower bound equation obtained when considering a value of k that is larger than one. 

 

Se / Sy < 1 in 𝑆𝑒 = 𝑆𝑦√[(𝑛 − 1)/(𝑛 − 𝑘 − 1)](1 − 𝑅
2) implies that the amount √[(𝑛 − 1)/(𝑛 − 𝑘 − 1)](1 − 𝑅2)

 should be less than one. This results in 

𝑅2 > 𝑘/(𝑛 − 1).                (8) 

 

4. Concluding Remarks and Future Research Directions 

There are several misconceptions when interpreting the values of the coefficient of determination, R2, in simple linear 

regression. In this paper, we comment on these observations and develop a relationship between the R2, n, and the level 

of significance α, for relatively small sample sizes. In addition, we develop a second model that serves as a lower bound 

to R2 as only a function of n. The idea behind this work is to have a better understanding of the connection between the 

different statistics used in linear regression, and to provide additional guidelines for the students, especially as they 

embark on their first statistics class.  

More specifically, students in different fields, such as the Business schools, might not have a strong grasp on the 

mathematical concepts, nor do they take enough statistics classes to delve correctly into interpreting their software 

outcomes, yet, they are expected to use them in their academic career, and then later, when they join the workforce. 

Most importantly, in most cases, students when learning these concepts are not dealing with super-size samples, nor are 

they learning how to program models for big data, especially the ones that don’t have any programming background, 

yet require learning the basic concepts of statistics. 

In addition, this paper serves as a guiding tool to people in the industry who face similar challenges and have a limited 
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knowledge and skills in both the analytical and the programming part, yet they use statistical analysis for decision 

making. 

Our focus in this paper is the small sample size data, and how the different values of R2 connect to the concept of 

“significance”. The main contribution of this research is to simplify these relationships, and present them in such a way, 

that any first-time user of basic statistics can have the ability of understanding the dos and don’ts of interpreting 

statistical results such as the R2 in a relatively small sample. 

In order to do this, we developed two models. The first model is a power function: 𝑅2 = 𝐶1𝑛
𝐶2 , where the coefficients 

C1 and C2 are functions of . It relates the coefficient of determination R2 to the sample size n, and the level of 

significance α. In addition, this relationship determines the starting point of n for each alpha value. This simplified 

relationship gives us the significant values of R2 for a range of specified values of n and α. In addition, this relationship 

determines the starting point of n for each alpha value.  

The second model gives us a lower bound of R2 as only a function of the sample size n. 

A future research direction is to extend this work to the multiple regression case with small number of independent 

predictors and to develop similar simplified relationships. 

References 

Bartko, J. J., Pulver, A. E., & Carpenter, W. T. (1988). The Power of Analysis: Statistical Perspectives. Part II, Psychiatry 

Research, 23, 301-309. https://doi.org/10.1016/0165-1781(88)90021-2 

Bewick, V., Cheek, L., & Ball, J. (2003). Statistics Review 7: Correlation and Regression, BioMed central, 6(7), 451-459. 

https://doi.org/10.1186/cc2401 

Bland, J. M., & Altman, D. G. (1996). Measurement Error and Correlation Coefficients, BMJ, 313-412. 

https://doi.org/10.1136/bmj.313.7048.41 

Cohen, J. (1992). A Power Primer, Psychological Bulletin, 1(112), 155-159. 

https://doi.org/10.1037/0033-2909.112.1.155 

Cramer, J. S. (1987). Mean and Variance of R2 in Small and Moderate Samples, Journal of Econometrics, 35, 253-266. 

https://doi.org/10.1016/0304-4076(87)90027-3 

Erdfelder, E., Faul, F., & Buchner, A. (1996). GPOWER: A General Power Analysis Program, Behavior Research 

Methods, Instruments, and Computers, 28, 1-11. https://doi.org/10.3758/BF03203630 

Filho, D. B. F., Paranhos, R., da Rocha, E. C., Batista, M., da Silva Jr, J. A., Santos, M. L. W. D., & Marino, J. G. (2013). 

When is Statistical Significance Not Significant? Brazilian Political Science Review, 1(7), 31-55. 

https://doi.org/10.1590/S1981-38212013000100002 

Filho, D. B. F., Silva, J. A., & Rocha, E. C. (2011). What is R2 all About? Leviathan, 3, 60-68. 

https://doi.org/10.11606/issn.2237-4485.lev.2011.132282 

Fisher, R. A. (1915). Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely 

Large Population, Biometrika, 4(10), 507-521. https://doi.org/10.2307/2331838 

Fritz, M. S., & MacKinnon, D. P. (2007). Required Sample Size to Detect the Mediated Effect, Psychological Science, 

3(18), 233-239. https://doi.org/10.1111/j.1467-9280.2007.01882.x 

Gauss, C. F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem Ambientum. 

Hagquist, C., & Stenbeck, M. (1998). Goodness of Fit in Regression Analysis – R2 and G2 Reconsidered,” Quality and 

Quantity, 32, 229-245. https://doi.org/10.1023/A:1004328601205 

Hsieh, F. Y., Bloch, D. A., & Larsen, M. D. (1998). A Simple Method of Sample Size Calculation for Linear and 

Logistic Regression, Statistics in Medicine, 17, 1623-1634.  

https://doi.org/10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S 

King, G. (1991). Stochastic Variation: A Comment on Lewis-Beck and Skalaban's the R-Square, Political Analysis, 2, 

185-200. https://doi.org/10.1093/pan/2.1.185 

Knofczynski, G. T., & Mundfrom, D. (2007). Sample Sizes when Using Multiple Linear Regression for Prediction, 

Educational and Psychological Measurement, 68, 431. https://doi.org/10.1177/0013164407310131 

Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des comètes, Paris: F. Didot. 

Maas, C. J. M., & Hox, J. J. (2005). Sufficient Sample Sizes for Multilevel Modeling, Methodology, 3(1), 86-92. 

https://doi.org/10.1027/1614-2241.1.3.86 

https://doi.org/10.1016/0165-1781(88)90021-2
https://doi.org/10.1186/cc2401
https://doi.org/10.1136/bmj.313.7048.41
https://doi.org/10.1037/0033-2909.112.1.155
https://doi.org/10.1016/0304-4076(87)90027-3
https://doi.org/10.3758/BF03203630
https://doi.org/10.1590/S1981-38212013000100002
https://doi.org/10.11606/issn.2237-4485.lev.2011.132282
https://doi.org/10.2307/2331838
https://doi.org/10.1111/j.1467-9280.2007.01882.x
https://doi.org/10.1023/A:1004328601205
https://doi.org/10.1002/(SICI)1097-0258(19980730)17:14%3c1623::AID-SIM871%3e3.0.CO;2-S
https://doi.org/10.1093/pan/2.1.185
https://doi.org/10.1177/0013164407310131
https://doi.org/10.1027/1614-2241.1.3.86


Journal of Education and Training Studies                                                Vol. 7, No. 12; December 2019 

40 

McGraw, K. O., & Wong, S. P. (1996). Forming Inferences About Some Intraclass Correlation Coefficients, 

Psychological Methods, 1, 30-46. https://doi.org/10.1037/1082-989X.1.1.30 

Moksony, F. (1999). Small is Beautiful. The Use and Interpretation of R2 in Social Research, Review of Sociology, 

(Special issue), pp.130-138. 

Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen Ways to Look at the Correlation Coefficient,” The American 

Statistician, 1(42), 59-66. https://doi.org/10.2307/2685263 

Rovine, M. J., & Von Eye, A. (1997). A 14th Way to Look at a Correlation Coefficient: Correlation as the Proportion of 

Matches, The American Statistician, 1(51), 42-46. https://doi.org/10.1080/00031305.1997.10473586 

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass Correlations: Uses in Assessing Reliability, Psychological Bulletin, 86, 

420-428. https://doi.org/10.1037/0033-2909.86.2.420 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.  

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

https://doi.org/10.1037/1082-989X.1.1.30
https://doi.org/10.2307/2685263
https://doi.org/10.1080/00031305.1997.10473586
https://doi.org/10.1037/0033-2909.86.2.420
http://creativecommons.org/licenses/by/4.0/

