A Study on Competitiveness Assessment Indicators for Global Aviation Training Organizations

Yong Ki Yi¹, Kwang-Eui Yoo²

¹Researcher, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-City, South Korea

²Professor, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-City, South Korea

Corresponding Author: Kwang-Eui Yoo, Professor, Korea Aerospace University, 76 Hanggongdaehak-ro, Deogyang-gu, Goyang-City, South Korea. E-mail: keyoo@kau.ac.kr

Received: April 21, 2018	Accepted: June 14, 2018	Online Published: June 19, 2018
doi:10.11114/jets.v6i8.3373	URL: https://doi.org/1	0.11114/jets.v6i8.3373

Abstract

This study aims to develop a competitiveness assessment index for global aviation training organizations. The study utilizes the four factors of the Diamond model developed by Michael Porter. To select candidate indices, expert consultations were made, and two stages of Delphi survey were conducted on 24 experts in the area of global aviation training and education. Finally, 19 indices were selected for analysis. In order to assess the reliability of the final indices and justify selection, an empirical study was conducted with 100 participants, yielding statistically significant results. The 19 indices were organized into a three-level hierarchy system, and an analytical hierarchy process (AHP) was conducted to evaluate the importance of each index. The results of the AHP indicated that 'quality of instructors' was the most important index, followed by 'feedback from trainees for the course (level of satisfaction with the course)' and 'director's management skills and leadership'. This study will contribute to enhancing the competitiveness of global aviation training organizations.

Keywords: competiveness, competiveness assessment indicator, aviation training organization, Delphi, Analytic Hierarchy Process (AHP), Diamond model, Content Validity Ratio (CVR), Coefficient of Variation (CV)

1. Introduction

The world has entered an era of limitless competition, and the field of training is no exception. Training and education service areas (e.g. universities) as well as aviation training organizations compete fiercely to survive. Aviation training organizations in particular, aggressively seek out methods of enhancing their competitive power in the global aviation training market. For instance, they attempt to attract competitive, highly qualified instructors to develop and deliver courses. In this regard, studies on how to measure competitive power of global aviation training organizations to survive and gain competitive advantage are of vital significance.

This study aims to explore the implications of competitiveness assessment indices in evaluation of aviation training organizations in order to conceptualize competitiveness of global aviation training organizations.

With that in mind, in order to research theoretical aspects on competition and establish criteria on competitiveness assessment for global aviation training organizations, literature and precedent studied were reviewed. Since studies on global aviation training competitiveness do not exist, studies on completion assessment for higher education institutions were mainly reviewed.

This study endeavors to develop competitiveness assessment criteria and indices optimized for global aviation training organizations using statistical analysis associated with competitiveness assessment theory. To accomplish this objective, this study attempts to collect and empirically analyze expert opinions in the field of aviation personnel training.

2. Research Methodology

Competitiveness assessment for this study is carried out on the basis of Michael Porter's Diamond theory. The hierarchy structure and weighted value of assessment indices are analyzed via an analytic hierarchy process (AHP), and the Delphi survey is used to collect expert opinions. A brief instruction of each method is as follows.

2.1 Diamond Theory

Diverse theoretical approaches to competitiveness assessment have been introduced. Among those approaches, the Diamond model offered by Professor Michael Porter (1990) at Harvard University has become the most representative. This study aims to draw all relevant variables for the competitiveness assessment of global training organizations on the basis of the four key elements from Michael Porter's Diamond framework – (1) factor conditions, (2) demand conditions, (3) related and supporting industries, and (4) firm strategy, structure and rivalry. The Diamond framework was originally designed to analyze national competitiveness. However, because it can be applied to various industries, enterprises and numerous non-business areas, it has been used as a basic model to effectively assess the competitiveness of global aviation training organizations.

Figure 1. Diamond Model

In the Diamond model, factor conditions is a comprehensive concept that includes social overhead capital such as natural resources, manpower, capital, technology status, roads, ports, airports and telecommunication facilities. Demand conditions is the demand size and quality. Firm strategy, structure and rivalry can potentially affect national competitiveness in terms of economic and business environments and strong competitors which are closely related to creation, structure and operation of firms. The development and growth of related local supporting industries and suppliers can become key competitiveness assessment indicators as these industries directly complement each other in the overall national economy.

2.2 Delphi

In the event of insufficient precedent research and literature, a Delphi survey can be carried out on a panel of experts in corresponding area. Until the opinions of experts converge to an agreement, rounds of a basic survey method is performed until a criteria can be justified from the survey responses. A criterion can be assumed to be justified if the responses from experts converge in a consistent pattern in terms of the level of convergence and agreement and the Kendall's coefficient of concordance (Kendall's W). The Delphi survey leads to a convergence in expert opinions via a formula that divides the difference between the upper quartile (Q3) and lower quartile (Q1) in half, thus (Q3-Q1)/2. The agreement level can be estimated using the difference between the quartiles and the median. This level varies from 0 to 1, and a value closer to 1 would imply a higher level of agreement. The value of Kendall's W ranges from 0 to 1. A Kendall's W value closer to 1 implies that the level of opinion convergence is high (Schmidt, 1997). The following formula represents the calculation of the Kendall's W value;

Kendall's
$$W = \frac{12\sum_{j=1}^{m}(\sum_{i=1}^{n}R_{ij})^{2}}{m^{2}n(n^{2}-1)} - \frac{3(n+1)}{n-1}$$

where the total number of judges (respondents) in a group is 'm', the number of objects, 'n', regarding object 'i' ranked by judge 'j'.

The survey can be justified using the agreement level according to the content validity ratio (CVR). Lawshe (1975) indicated that when the panel number was 15 or 25, the CVR had to be at least 0.49(P=0.05) or 0.37(P<0.05), respectively. Table 1 is to show index selection criteria.

	Contents	Criteria
Content Validity Ratio (CVR)	If the number of respondents answering 4 or 5 in a 5-point Likert survey exceeds 50%, it is deemed justified.	$CVR \ge 0.37$ (When the total panel number exceeds 25)
Level of Agreement	As the difference between the 3 rd and 1 st quartile decreases, the value approaches 1. As the difference increases, the value approaches 0 and the level of agreement decreases.	Level of Agreement ≧ 0.75
Level of Convergence	As the difference between the 3^{rd} and 1^{st} quartile decreases, the level of convergence increases. When the difference increases, the level of convergence decreases.	Level of Convergence ≦ 0.50
Positive Rate	This is the percentage of respondents answering relatively positively (indicating 4 or 5 points in a 5-point Likert survey).	More than 55%
Average Value	These are the average values of the positive answers in a 5-point Likert survey. (The 5-point value in a 7 point Likert survey which is considered a positive- answer-value, is converted to this value in a 5-point Likert survey.)	3.56 (5-point Likert survey)

Table 1. Detailed Index Selection Criteria

2.3 AHP

The analytic hierarchy process (AHP) was developed by Professor Thomas L. Saaty in the early 1970s and is also known as multi-criteria decision making (MCDM). It is a decision making method that applies knowledge, experience and intuition from respondents via pairwise comparisons between objects comprising each hierarchy level (Kim Yong-Jung, 2013). The AHP method is usually carried out in order to analyze the weight (significance level) of each individual subject after conducting a Delphi survey. The combination of Delphi and AHP is theoretically a justifiable survey(Lee Hwa Jin, 2011; Song Dal Yong, 2007; Cho Geun Tae, Cho Yong Gon & Kang Hyun Soo, 2003).

The judgments (responses) from the respondents in an AHP survey must be verified for consistency using the consistency index (CI). The consistency ratio (CR) also demonstrates whether consistency of opinions has been maintained. Consistency is the reasoning of the replies from respondents, namely reliability. The CR utilizes characteristics in which the closer the largest Eigen value (λ_{max}) approaches n, the more consistent it becomes. The CI can be calculated using the following formula.

$$CI = \frac{\lambda_{\max} - n}{n - 1}, \qquad \lambda_{\max} = \frac{1}{n} \sum_{a=1}^{f} \frac{\sum_{a=1}^{f} v_b \times r_{ab}}{v_a}$$

There are two ways to synthesize the weight values of each hierarchy level. One is to calculate the values from a single paired comparison after collecting opinions from more than two respondents. The other is to add up the results after collecting a pairwise comparison matrix (Saaty, 1980). The latter is usually used. When adding up the results, organizing a single pairwise comparison after combining a geometric mean is the most desirable method (Cho Geun Tae et al. 2003).

This study synthesized the overall results via a pairwise comparison based on the AHP. To calculate the weight values (r_{abi}) , the respective weight values had to be synthesized from the pairwise comparison matrix of each respondent (n) as a geometric mean $(GM(r_{ab}))$, and a single pairwise comparison matrix had to be organized. The formula is as follows.

$$GM(r_{ab}) = \prod_{i=1}^{n} \sqrt[n]{r_{abi}} = \prod_{i=1}^{n} (r_{abi})^{1/n}$$

2.4 Delphi Analysis and Results

The survey items for the Delphi were selected by literature review on competitiveness assessment indices for higher education institutions. In total, 62 indices for competitiveness assessment for global aviation training organizations were selected in four distinctive areas of Diamond theory, through literature research -19 indices for factor conditions; nine indices for demand conditions; 18 indices for firm strategy, structure and rivalry; and 16 indices for related and supporting industries.

Subsequently, the first Delphi survey was carried out through a group of Delphi panelists who are composed of 24 experts selected at the area of internationally renowned aviation institute. The 2nd Delphi survey was designed to encourage panelists to change or amend their opinions referring to an average value and a median value from opinions of panelists collected in the 1st Delphi survey (Best, 1974).

The verification procedure was applied utilizing content validity ratio (CVR) (Lawshe, 1975). Because the coefficient of variation (CV) value of the second Delphi survey was below the CV value of the first Delphi survey and change in value of CV remained within a difference in value of 0.5, no further Delphi surveys (after the second Delphi survey)

were deemed necessary. Table 2 is to show the results of Delphi analysis.

Table 2. 1st and 2nd Round Delphi Results

	Competitiveness Assessment		Descripti	ive Statistics		Convergence	Tendency		G - 1 4 ¹
	Index	Delphi	Average	Standard Deviation	Positive Rate	Convergence Level	Agreement Level	CVR	Result
	Average length of instructors'	1^{st}	3.74	0.915	73.9%	0.50	0.75	0.478	0
	experience	2 nd	3.80	0.616	70.0%	0.50	0.75	0.40	x
	Quality of instructors of aviation training organizations (Level of satisfaction with instructors)	1^{st}	4.65	0.573	95.7%	0.50	0.8	0.913	0
		2 nd	4.85	0.366	100%	0.00	1.00	1.00	•
Factor	Level of qualification training and	1^{st}	4.22	0.671	87.0%	0.50	0.75	0.739	0
(5 indices)	academic background of staff and instructors	2 nd	4.35	0.489	100%	0.50	0.75	1.00	•
(Kendall's	Convenience of facilities (e.g.	1^{st}	4.13	0.548	91.3%	0.00	1.00	0.826	0
W=0.297, Y	accommodation, cafeteria, sports facilities)	2 nd	4.30	0.571	95.0%	0.50	0.75	0.90	•
p=0.000	Level of training quality	1^{st}	4.43	0.590	95.7%	0.50	0.75	0.913	0
	management system (e.g. LMS, Internal Quality Assurance Program)	2 nd	4.40	0.598	95.0%	0.50	0.75	0.90	•
	Personnel engagement and		Newly ad	lded					
	commitment	2 nd	4.55	0.510	100%	0.50	0.80	1.00	•
Total Average			4.38	0.530	93.3%	0.42	0.80	0.87	-
	Number of overseas trainees in	1^{st}	3.70	0.822	69.6%	0.50	0.75	0.391	0
	aviation training organizations	2 nd	3.40	0.681	50.0%	0.50	0.71	0.00	Х
	Market size (Business market size / markets available to firms)	1^{st}	3.87	0.869	78.3%	0.00	1.00	0.565	0
		2^{nd}	3.70	0.470	70.0%	0.50	0.75	0.40	X
Demand	Scale of aviation labor mortest	1^{st}	4.09	0.668	82.6%	0.50	0.75	0.652	0
Conditions	Scale of aviation labor market	2 nd	4.25	0.550	95.0%	0.50	0.75	0.90	•
(4 indices)	Aviation industry growth rate in the	1^{st}	4.09	0.596	87.0%	0.00	1.00	0.739	0
<i>av</i> 1.112	selected region (e.g. Asia-Pacific, Europe)	2 nd	4.15	0.489	95.0%	0.00	1.00	0.90	•
(Kendall's $W = 0.374$	Goods market efficiency (Customer	1^{st}	3.87	0.920	73.9%	0.50	0.75	0.478	0
w = 0.374, y = = 44.851, df = 6, p = 0.000)	orientation, level of how demanding customers are) / buyer sophistication in the country	2 nd	3.85	0.745	65.0%	0.50	0.75	0.30	x
1	Number of trainees per one training	1^{st}	3.78	0.850	69.6%	0.50	0.75	0.391	0
	staff member	2 nd	4.20	0.616	90.0%	0.50	0.75	0.80	•
	Feedback from trainees for the	1^{st}	4.61	0.499	100%	0.50	0.80	1.000	0
	course (Level of satisfaction with the course)	2 nd	4.65	0.489	95.0%	0.50	0.80	0.90	●(SA)
Total Average			4.03	0.58	80.0%	0.43	0.79	0.60	-

(continuous)

	C		Descripti	Descriptive Statistics			Convergence Tendency		
	Lompetitiveness Assessment Index	Delphi	Average	Standard Deviation	Positive Rate	Convergence Level	Agreement Level	CVR	Result
	Quality of air transport	1^{st}	4.13	0.869	91.3%	0.50	0.75	0.826	0
Related and	infrastructure	2 nd	4.00	0.725	75.0%	0.75	0.63	0.50	X
Kenated and supporting industries (6 indices) (Kendall's W = 0.366 , \mathbf{y} =51.255, df=7 p=0.000)	Cooperation between	1 st	4.09	0.733	78.3%	0.50	0.75	0.565	0
	international organizations and aviation training organizations (e.g. ICAO, IATA, ACI, CANSO)	2 nd	3.90	0.788	75.0%	0.38	0.81	0.50	•
	ICAO safety/security audit	1 st	4.04	1.065	78.3%	0.50	0.75	0.652	0
	(USOAP and USAP)	2^{nd}	4.20	0.768	90.0%	0.50	0.75	0.80	•
	Level of IT technological	1 st	4.30	0.765	82.6%	0.50	0.75	0.652	0
	readiness (including Internet	2^{nd}	4.35	0.489	100%	0.50	0.75	1.00	•

	usage level)								
	Comprehensive world aviation	1 st	3.78	0.902	69.6%	0.50	0.75	0.391	0
	transportation ranking (passenger and cargo)	2 nd	3.45	0.826	55.0%	0.50	0.75	0.10	х
	Travel and tourism	1 st	3.61	1.196	82.6%	0.50	0.75	0.652	0
	competitiveness within the country	2 nd	3.50	0.946	50.0%	0.50	0.71	0.00	X
	Language (English) command	1 st	4.17	0.717	82.6%	0.50	0.75	0.652	0
	capability	2 nd	4.40	0.503	100.%	0.50	0.75	1.00	•
	Average salary of instructors	1 st	4.00	1.000	82.6%	0.50	0.75	0.652	0
	Average salary of instructors	2 nd	4.40	0.503	100%	0.50	0.75	1.00	•
	Budget for training aviation	1 st	4.48	0.730	87.0%	0.50	0.80	0.739	0
	personnel, facilities and equipment	2 nd	4.55	0.510	100%	0.50	0.80	1.00	•
Total Average		4.08	0.67	82.8%	0.51	0.74	0.66	-	
	Business sophistication (higher efficiency in the production of goods and services)	1 st	3.87	0.626	73.9%	0.50	0.75	0.478	0
		2 nd	3.70	0.733	65.0%	0.50	0.75	0.30	X
	Level of directors' management skills and leadership of aviation training organizations	1 st	4.57	0.728	95.7%	0.50	0.80	0.913	0
		2 nd	4.85	0.366	100%	0.00	1.00	1.00	•
Strategy,	Administration of innovation and growth of aviation training organizations	1 st	4.17	0.778	87.0%	0.50	0.75	0.739	0
Rivalry		2 nd	4.30	0.571	95.0%	0.50	0.75	0.90	•
(4 marces)	Number of specialized training	1 st	3.78	0.998	69.6%	0.50	0.75	0.391	0
(Kendall's W $= 0.369,$	academies within aviation training organizations (e.g. ATC, Pilot, Security, Safety)	2 nd	4.30	0.571	95.0%	0.50	0.75	0.90	•
f = 7. p = 0.000	Structure and means of	1 st	4.39	0.656	91.3%	0.50	0.75	0.826	0
ui=7, p=0.000)	teaching	2 nd	4.55	0.510	100%	0.50	0.80	1.00	•
	Proximity to major downtown	1 st	4.00	0.603	82.6%	0.00	1.00	0.652	0
	areas	2 nd	3.45	0.826	45.0%	0.50	0.67	-0.10	Х
	Accolades or awards given by	1 st	4.17	0.834	82.6%	0.50	0.75	0.652	0
	international organizations	2 nd	3.90	0.968	70.0%	1.00	0.50	0.40	Х
Total Averag	<i>je</i>		4.15	0.65	81.4%	0.50	0.75	0.63	-

Note X : Eliminated Index, \circ : Index selected in the 1st Delphi , \bullet : Index selected in the 2nd Delphi, Elimination cause

The 1st Delphi survey was carried out with open-ended and close-ended questionnaires. A total of 62 competitiveness assessment indices were assessed, with the aim of adding or amending other items not included in the original 62 indices. Six indices were moved or merged into other associated indices, four indices were amended, and one index was newly added. A total of 29 competitiveness assessment indices were finally selected as a result of the first Delphi survey.

These 29 indices were sorted out into a total of 19 indices through the second Delphi survey. Considering the number of panelists, the corresponding CVR values (first Delphi: 0.37, second Delphi: 0.42) were applied (Lawshe, 1975). The indices with values lower than the corresponding reference CVR values were eliminated. In addition, a positive response rate (i.e. indicating responses of 4 or 5 on the 5-point Likert scale) of over 55 percent was applied, with a convergence level of below 0.5 and an agreement level exceeding 0.75.

The indices with average values over 3.56 applied in the first Delphi survey were selected as applicable indices for the competitiveness assessment of global aviation training organization. This proved that the panelists agreed relatively well with one another because the Kendall's W values ranged from 0.297 to 0.374 which is within the valid reference value in the second Delphi survey.

Among the 19 selected indices, 'Quality of instructors of aviation training organizations' and 'Level of directors' management skills and leadership of the training organizations' had the highest average values (4.85). These indices were followed by 'Feedback from trainees for the course (Level of satisfaction with the course)' with an average value of 4.65, suggesting that feedback from trainees indicating satisfaction with the training courses was also very significant. Next, 'Personnel engagement and commitment' had an average value of 4.55, indicating that the most vital elements for the competitiveness assessment of a global aviation training organization were human performance related items.

	Upper Class	Lower Class	Particular index	Average	Standard Deviation	cv	Cronbach's α after removal	Cronbach' s α
			Quality of instructors of aviation training organizations (Level of satisfaction with instructors)	4.790	0.4094	0.09	0.942	
		Personnel Organization	Level of qualification training and academic background of staff and instructors	4.720	0.4513	0.10	0.942	0.736
	Factor		Personnel engagement and commitment	4.720	0.4513	0.10	0.941	_
	conditions	Training facility & System	Convenience of facilities (e.g. classroom, accommodation, cafeteria, sports facilities) of aviation training organizations	4.750	0.4352	0.09	0.940	0.021
			Level of training quality management system (e.g. LMS, Internal Quality Assurance Program)	4.740	0.4408	0.09	0.941	0.831
	Demand conditions	Size of training market	Scale of aviation labor market	4.550	0.5389	0.12	0.941	
			Regional aviation industry growth rate (e.g. Asia-Pacific, Europe)	4.590	0.5143	0.11	0.940	0.856
		Quality of training	Number of trainees per one training staff member	4.640	0.4824	0.10	0.941	0.720
		market	Feedback from trainees for the course (Level of satisfaction with the course)	4.730	0.4462	0.09	0.940	0.730
		Professional and technical support environment	Cooperation between international organizations and aviation training organizations (e.g. ICAO, IATA, ACI, CANSO)	4.740	0.5049	0.11	0.941	
	Related and		ICAO safety/security audit (USOAP and USAP) results in the country	4.740	0.5049	0.11	0.940	0.834
	supporting industries		Level of IT technological readiness (including internet usage level)	4.660	0.5360	0.12	0.940	
			Language (English) command capability	4.740	0.4845	0.10	0.943	
		inancial/general	Average salary of instructors	4.520	0.5409	0.12	0.943	0 719
		onditions	Budget for aviation personnel training, facilities and equipment	4.690	0.4648	0.10	0.940	-0.719
		Organization	Level of director's management skills and leadership of aviation training organizations	4.680	0.4688	0.10	0.941	0.754
	Firm strategy, structure,	suarcy	Administration of innovation and growth of aviation training organizations	4.680	0.4899	0.10	0.940	
	structure, rivalry	Structure of training	Number of specialized training academies within aviation training organizations (e.g. ATC, Pilot, Security, Safety)	4.670	0.5329	0.11	0.940	0.756
		organization	Structure and means for teaching	4.760	0.4292	0.09	0.940	

In accordance with the empirical analysis, as Table 3 illustrates, all 19 competitiveness assessment indices were verified as justifiable (with average values of over 4.2) as competitiveness assessment indices. The analysis also proved that all indices were stable with CV values under 0.12.

3. AHP Analysis and Structure of Assessment Indices

The AHP analysis was conducted with the 19 indices selected from the Delphi survey through 162 participants (22 aviation training experts and 140 general trainees). Some responses from general trainees were eliminated because the CR values were not satisfactory.

The decision making hierarchy structure was organized for an AHP survey with three classes (upper, lower and particular indices) as shown in Fig. 2 On the basis of the triple-class hierarchy structure, a total of 24 questionnaire

items regarding the 19 indices was drafted. Each questionnaire item was designed to analyze the relative importance level (weight) of the upper and lower class items as well as the particular indices based on a 9-point Likert scale.

The results of the importance level (weight) for each upper class item are illustrated in Table 4. 'Factor conditions' (0.297) was ranked first, followed by 'Demand conditions' (0.253), 'Strategy, Structure and rivalry' (0.227) and 'Related and supporting industries' (0.224). The analysis showed that the importance level (weight) of each upper class item was evenly distributed.

The CR values of each panelist for the relative importance assessment of each upper class item were within 0.100, meaning the consistency of each item was satisfactory.

Table 5 illustrates the relative importance and the priority ranking of each lower class item, and the comprehensive analysis results of the importance level (weight) of each index and class item (i.e. upper class, lower class and particular indices) are illustrated in Fig. 2.

	Results		Panelists		General Trainees	
Upper Class Item	Relative	Priority Bonking	Relative	Priority Ponking	Relative	Priority Bonking
	importance	Kanking	importance	Kalikilig	importance	Kanking
Factor conditions	0.296	1	0.369	1	0.283	1
Demand conditions	0.253	2	0.176	4	0.268	2
Related and supporting industries	0.224	4	0.271	2	0.215	4
Strategy, structure and rivalry	0.227	3	0.184	3	0.234	3
CR	0.000		0.001		0.001	

Table 4. Numerical Weight and Priority of Upper Level

Table 5. Numerical Weight and Priority of Lower Level

		Results		Panelists		General Trainees	
Lower Class Item		Relative Importance	Priority Ranking	Relative Importance	Priority Ranking	Relative Importance	Priority Ranking
Factor conditions	Personnel organization	0.624	1	0.697	1	0.610	1
	Training facility and system	0.376	2	0.303	2	0.390	2
D 1 1's'	Size of training market	0.422	2	0.267	2	0.453	2
Demand conditions	Quality of training market	0.578	1	0.733	1	0.547	1
Related and supporting	Professional and technical support environment	0.598	1	0.520	1	0.612	1
industries	Financial/general support conditions	0.402	2	0.480	2	0.388	2
	Organization strategy	0.600	1	0.589	1	0.602	1
structure, and rivalry	Structure of training organization	0.400	2	0.411	2	0.398	2

Figure 2. Weighted Value Hierarchy of Competitiveness Evaluation Index

Out of a total of 19 indices for competitiveness assessment of global aviation training organizations, the highest weight

0.048

11

was given to 'Quality of instructors of aviation training organizations (Level of satisfaction with instructors)' (0.097) and the lowest weight (significance level) was given to 'Average salary of instructors' (0.019). Detailed analysis results are illustrated in Table 6.

Upper Class	Lower Class	Particular Index	Weight (Significance Level) (a x b x c)	Priority
(u)		Quality of instructors of existion training enconigations (Level of	(4 x 0 x 0)	
		satisfaction with instructors)	0.097	1
Factor conditions	Personnel organization	Level of training qualification and academic background of staff and instructors	0.044	12
(a) Factor conditions Demand conditions Related and supporting industries		Personnel engagement and commitment	0.044	13
		Convenience of facilities (e.g. classroom, accommodation, cafeteria, sports facilities) of aviation training organizations	0.041	15
	Iraining facility and system	Level of training quality management system (e.g. LMS, Internal Quality Assurance Program)	0.070	4
		Scale of aviation labor market	0.052	7
Demand conditions	Size of training market	Regional aviation industry growth rate in the (e.g. Asia-Pacific, Europe)	0.054	6
		Number of trainees per one training staff member	0.050	9
	Quality of training market	Feedback from trainees for the course (Level of satisfaction with the course)	0.096	2
		Cooperation between international organizations and aviation training organizations (e.g. ICAO, IATA, ACI, CANSO)	0.051	8
Related and	Professional and technical support environment	ICAO safety/security audit (USOAP and USAP) results in the country	0.050	10
supporting industries		Level of IT technological readiness (including Internet usage level)	0.034	17
	Financial/general support	Language (English) command capability	0.040	16
	conditions	Average salary of instructors	0.019	19
		Budget for training aviation personnel, facilities and equipment	0.031	18
		Level of directors' management skills and leadership of aviation training organizations	0.072	3
Firm strategy,	Organization strategy	Administration of innovation and growth of aviation training organizations	0.065	5
structure, rivalry	Structure of training	Number of specialized training academies within aviation training organizations (e.g. ATC, Pilot, Security, Safety)	0.042	14

Table 6. Final Competiveness Index and Numerical Weight

The differences between the panelists' group and general trainees' group are illustrated in Table 7. The panelists assessed the weight of each particular index in the following order: 'Quality of instructors' (0.141), 'Feedback from trainees for the course' (0.096), 'Level of directors' management skills and leadership of aviation training organizations' (0.073), 'Level of training quality management system(0.072) and so on. Meanwhile, the general trainees assessed the weight of each particular index in the following order: 'Feedback from trainees for the course (Level of satisfaction with the course)' (0.096), 'Quality of instructors' (0.090), 'Administration of innovation and growth of aviation training organizations' (0.070) and so on.

Structure and means for teaching

Table 7.	Final	Competiveness	Index an	d Numerical	Weight of	of Experts and	Trainees
					<u> </u>	1	

Particular index	Panelist (a	a)	General T	rainee (b)	Gap betw groups (a-	Gap between both groups (a-b)	
	Weight	Rank	Weight	Rank	Weight	Rank	
Quality of instructors of aviation training organizations (Level of satisfaction with instructors)	0.141	1	0.090	2	0.051	-1	
Level of training qualification and academic background of staff and instructors	0.057	6	0.042	13	0.015	-7	
Personnel engagement and commitment	0.059	5	0.041	14	0.018	-9	
Convenience of facilities (e.g. classroom, accommodation, cafeteria, sports facilities) of aviation training organizations	0.040	12	0.041	15	-0.001	-3	
Level of training quality management system (e.g. LMS, Internal Quality Assurance Program)	0.072	4	0.069	5	0.003	-1	
Scale of aviation labor market	0.022	19	0.060	7	-0.038	12	
Regional Aviation industry growth rate (e.g. Asia-Pacific, Europe)	0.025	18	0.061	6	-0.036	12	
Number of trainees per one training staff member	0.033	16	0.053	8	-0.02	8	
Feedback from trainees for the course (Level of satisfaction with the course)	0.096	2	0.093	1	0.003	1	
Cooperation between international organizations and aviation training organizations (e.g. ICAO, IATA, ACI, CANSO)	0.052	7	0.050	11	0.002	-4	
ICAO safety/security audit (USOAP and USAP) results of the country	0.044	11	0.050	9	-0.006	2	
Level of IT technological readiness (including Internet usage level)	0.045	10	0.031	17	0.014	-7	
Language (English) command capability	0.050	8	0.038	16	0.012	-8	
Average salary of instructors	0.031	17	0.018	19	0.013	-2	
Budget for aviation personnel training, facilities and equipment	0.049	9	0.028	18	0.021	-9	
Level of directors' management skills and leadership of aviation training organizations	0.073	3	0.070	4	0.003	-1	
Administration of innovation and growth of aviation training organizations	0.035	15	0.071	3	-0.036	12	
Number of specialized training academies within aviation training organizations (e.g. ATC Pilot Security Safety)	0.038	14	0.043	12	-0.005	2	
Structure and means for teaching	0.038	13	0.050	10	-0.012	3	

The level of gaps in weights between the two groups were demonstrated in the following order: 'Scale of aviation labor market' (Gap value: 0.038), 'Regional aviation industry growth rate (e.g. Asia-Pacific, Europe)' (Gap value: 0.036) and 'Administration of innovation and growth of aviation training organizations' (Gap value: 0.036).

The trainee group put the highest value on the items associated with the training market, while the panelist group, as training suppliers, thought of the training market the least important area. Among the 19 indices, 10 indices showed ranking differences between 1 to 4, six indices indicated a ranking difference between 7 to 9, and three indices showed 12 ranking differences. However, it appeared that the gap difference between the panelist group and the general trainee group was not big.

4. Conclusion

This study was carried out in order to finalize the competitiveness assessment indices of global aviation training organizations through Delphi surveys and an AHP survey by expert panelists. All indices were classified into four categories (Upper class at AHP structure) based on Diamond theory.

The AHP analysis results revealed that among the 19 indices for the competitiveness assessment of global aviation training organizations, 'Quality of instructors' (0.097) and 'Feedback from trainees'(0.096) were selected as the most significant indices. The third most important index was 'Level of director's management skills and leadership of aviation training organizations'(0.073).

This study provided a meaningful opportunity to study competitiveness assessment for global aviation training organizations and opened up opportunities to connect strategies of global aviation training organizations with business strategy research.

References

- Best, R. J. (1974). An experiment in Delphi estimation in marketing decision making. *Journal of Marketing Research*, *11*(4), 448-452. https://doi.org/10.2307/3151295
- Cho, G. T., Cho, Y. G., & Kang, H. S. (2013). Analytic Hierarchy Decision Making of Advanced Leaders. Seoul: Dong Hyun Press

- Choi, H. S. C., & Sirakaya, E. (2006). Sustainability indicators for managing community tourism, *Tourism Management*, 27(6), 1274 -1289. https://doi.org/10.1016/j.tourman.2005.05.018
- Chung Yoon, et al, (2013). Study on international competitiveness analysis on Medicare Tourism: Focusing on Korea, Thailand, Singapore and Malaysia", Korea Institute for Industrial Economic & Trade.
- Donohoe, H. M., & Needham, R. D. (2008). Moving best practice forward: Delphi characteristics, advantages, potential problems, and solutions," *International Journal of Tourism Research*, 11(5), 415-437.
- Donohoe, H. M., & Needham, R. D. (2008). Moving best practice forward: Delphi characteristics, advantages,, potential problems, and solutions. *International Journal of Tourism Research*, 11(5), 415-437. https://doi.org/10.1002/jtr.709
- Kim, Y. J. (2013). Hierarchy Strategic Assessment Model Development and Major Element Significance Level Analysis – focusing on Incheon Airport, Cheung Buk University
- Kwon, T. I. (2009). Study on priority of affected factors in tourist attraction remodeling: Application on Delphi and AHP method, Sejong University
- Lawshe, C. H. (1975). A quantitative approach to content validity, *Personnel Psychology*, 28, 563-575. Purdue University
- Lee, H. J. (2011). Assessment Indicator Development for Secretary Major in Specialized Colleges, Seoul National University
- Porter, M. E. (1980). Competitive Strategy, Free Press, New York
- Rowe, G., & Wright, G. (2001). Expert opinions in forecasting: The role of the Delphi technique in J. Armstrong (Ed.) Principles of Forecasting, Boston: Kluwer Academic, 125-144. https://doi.org/10.1007/978-0-306-47630-3_7
- Saaty, T. L. (1980). The Analytic Hierarchy Process," McGraw-Hill, New York.
- Seo, I. Y. (2008). Study on standards and Indicators for University Competitiveness Assessment, Chung-Ang University
- Song, D. Y. (2007). Specialized high school assessment standard development, Seoul National University

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the <u>Creative Commons Attribution license</u> which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.