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 make and test mathematical predictions; 

 assess and improve mathematical discussions and proofs;  

 know various types of reasoning and be able to choose from and use methods of proof required for the process 
of testing. 

A review of the mathematics curriculums for any grade in schools in Turkey, which have been gradually revised since 
2005 and updated in 2013, suggests that the concept of proof is not directly incorporated into the curricula for primary 
and secondary schools but that an attempt is made to teach the concept of proof through the skills of reasoning and 
correlation, both of which are mathematical process skills also specified in the National Council of Teachers of 
Mathematics standards Ministry of National Education (MNE, 2015; NCTM, 2000). In fact, reasoning is described in 
these curricula as the process by which new information is acquired based on present information using materials of 
mathematics (symbols, definitions, relations, etc.) and thinking techniques (induction, deduction, comparison, 
generalization, etc.) unique to mathematics. In this respect, some of the indicators to be taken into consideration in 
efforts to enable students to acquire the skill of reasoning are 

 arguing for the accuracy and validity of deductions; 

 making logical generalizations and deductions;  

 explaining and using mathematical patterns and relations when analyzing a mathematical situation. 

Activities for enabling students to acquire the skills of reasoning and association are included, though with varying 
degrees of focus, in each learning domain of the curricula for primary and elementary schools (MNE, 2015). The 
objective of the curriculum for high schools is to present informal situations to students and for them to move from this 
informal situation to a formal mathematical structure. In this way, the curriculum provides them with an opportunity to 
explore mathematical relations and to associate them with other concepts that call for a high-level of mathematical 
competence. The curriculum, for the first time, emphasizes the skill of proving among the process skills. This 
curriculum integrates attainments for the development of proof-writing ability and mathematical reasoning into some of 
its subjects, such as “Methods of Proof” in the learning domain of Logic, “Real Numbers, Logarithm, Induction and 
Series” in the learning domain of Algebra, “Matrix, Determinant and Linear Equation Systems” in Trigonometry 
formulas and in the learning domain of Linear Algebra and “Limit, Derivative and Integral” in the learning domain of 
Basic Mathematics (MNE, 2015). It is acknowledged that the competence of the teacher matters when it comes to 
enabling students to acquire reasoning, association and proof-writing skills, all of which are emphasized in mathematics 
curricula. In fact, “Subject Matter Competencies for Mathematics Teachers”, published by Ministry of National 
Education , refers to “developing students’ reasoning skills” and “developing students’ association skills”, the second 
and third items included in the competence domain of “developing mathematical skills” (Matematik Öğretmeni Özel 
Alan Yeterlikleri, 2008).  

Although the proof and proving are expected to play much more important role in school mathematics, many research 
studies conducted in the last two decades have suggested that the students have serious difficulties with proof and 
proving (e.g., Bell, 1976; Chazan, 1993; Coe & Ruthven, 1994; Healy & Hoyles, 2000; İnam & Uğurel, 2016; Mariotti, 
2000; Porteous, 1990; Romero, García, & Codina, 2015; Selden & Selden, 2009; Senk, 1985; Solomon, 2006; Sowder 
& Harel, 1998; Weber, 2001).  

Research on the causes of these difficulties has demonstrated that there is a positive correlation between logical thinking 
and proof-writing skills (Johnson & Lawson, 1998) and that any deficiency in the logical thinking skill tends to restrict 
the proof writing (Lawson, 1992). It is also reported that students know neither about definitions of proof nor how to 
use them (Edwards & Ward, 2004; Knapp, 2005; Moore, 1994; Weber, 2006), that they fail to understand the nature of 
proof, mathematical rules, or techniques and strategies for proving (Gibson,1998; Weber, 2006), and that they cannot 
properly use logical evidence or mathematical language (Baker & Campbell, 2004; Edwards & Ward, 2004; Knapp, 
2005; Moore, 1994).  

Considering the principal objectives of mathematics curricula and the effects of proof-writing skill on mathematical 
reasoning, students can be trained to be satisfactorily competent at proof-writing and reasoning through teachers who 
have these two skills. If a mathematics teacher does not adequately understand the nature, techniques, strategies of 
proofs and mathematical language, they are likely to fail to train their students properly in this respect. Therefore, it is 
essential that teachers be aware of proof-writing skills, along with various types of proof-writing, seeing that they are 
responsible for perceiving their students’ difficulties on writing proofs and for developing effective teaching methods. 
Otherwise, they might not take students’ solutions into consideration by labeling a proof qualified in the literature as 
“not a proof”.  

In order that the objectives specified in the curriculum can be realized, it is crucial that teachers as well as prospective 
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teachers have sufficient pedagogical content knowledge about proofs. Herein, the Taxonomy of Mathematical Proof, 
composed by Balacheff in accordance with students’ stages of cognitive development, will hopefully prove to be a 
guide for teachers, in the broadest sense, in their attempts to assess proofs written by students (Nesher & Kilpatrick, 
1990). 

Balacheff (1988) divided mathematical proofs into three levels, namely pragmatic proof, intellectual proof and 
demonstration proof. Pragmatic proofs, which exist at the lowest level, involve unrelated responses, proofs completely 
based on numerical examples- experimental arguments- leaving blank or responses based simply on the writing of what 
is given. Intellectual proofs, which are at the intermediate level, include proofs based on formulation- that is, proofs 
given through the use of incomplete mathematical language and demonstrations- or logical attempts to write proofs with 
a general argument. Demonstration, which is the highest level, is characterized by completely accurate proofs that have 
to be organized with a theory or the use of information commonly accepted by a community. Assessments of proofs 
written by students can draw on this classification. Balacheff’s proof levels, organized according to students’ stages of 
cognitive development, forms the theoretical basis for the study.  

The purpose of the study is to identify the proof writing levels of prospective teachers and to reveal the difference 
between varying proof writing levels and logical thinking skills. The following research problems were posed 
accordingly:  

1) What are proof writing levels of prospective teachers? 

2) Is there a significant difference between prospective teachers’ proof-writing levels and logical thinking skills? 

2. Method 

2.1 Study Model 

The study used a mixed research design, a method which enables qualitative and quantitative approaches to be used in a 
collective or integrated manner (Creswell, 2008). As a qualitative side of the research design, a case study is used. In 
addition, the study also involved the use of a correlative survey method, which attempts to identify any possible 
correlation between two or more variables and to determine their significance and direction (Creswell, 2008).  

2.2 Participant 

The sample was selected through criterion sampling, one of the purposive sampling methods. The basic concept of 
criterion sampling method is the study of all cases that meet a set of predetermined criteria (Yıldırım & Şimşek, 2005). 
Two criteria were specified for the study: The participants must be senior students attending the department of 
Elementary Mathematics Education at Balıkesir University University during the 2014-2015 academic year and they 
must have passed the Abstract Mathematics, Analysis I, II and III, and Introduction to Algebra courses. Students were at 
the age of 21. The sample was comprised of 53 (25 male, 28 female) participants randomly selected out of 130 
prospective teachers who meet both of the criteria.  

2.3 Data Collection Instruments 

In this study to identify the prospective teachers’ proof-writing levels, “The Proof-Writing Scale” and “the Test of 
Logical Thinking”, which was developed by Tobin & Capie (1981) and adapted to Turkish by Geban, Aşkar & Özkan 
(1992) were used.  

“The Proof-Writing Scale” is comprised of 20 open-ended questions determined based on the theorems used in basic 
courses given at the department of Elementary Mathematics Teaching, such as Analysis, Algebra, and Abstract 
Mathematics. The theorems were submitted to five specialists who were teaching the courses, and they were asked to 
assess them in terms of language and comprehensibility and clarity of the questions.  

The content validity was tested through Lawshe’s (1975) technique (as cited in Yurdagül, 2005). Each item in the 
preliminary scale was rated in accordance with learned opinion as follows: “able to measure the targeted construct”, 
“relevant to the construct but unnecessary”, “able to partly measure the targeted construct”, and “unable to measure the 
targeted construct”. The content validity ratios were determined for the test items. In this way, four questions were 
observed to have content validity ratios of more than .78 (Veneziano & Hooper, 1997) at the level of significance being 
α =0.05. 

The proofs written by the prospective teachers for the theorems included in the Proof-Writing Scale were separately 
analyzed by the researchers, and the reliability of the study was tested based on the reliability formula proposed by 
Miles & Huberman (1994), namely “reliability = number of agreements / (number of agreements + number of 
disagreements). The reliability, as calculated with the formula, was 98%. Since the value was higher than 70%, the 
reliability was confirmed (Miles & Huberman, 1994).  
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The proof written by S48 is an example of intellectual 
proofs. He preferred to use an inductive method of proving 
yet could not finalize the proof accurately since he did not 
show the accuracy of the expression for n=k+1. 

The proof written by S51 is an example of 
pragmatic proofs. Apparently, she used binomial 
expansion and assigned a numerical value. 
Therefore she actually did was give an unrelated 
response. No proof existed. 

Figure 4. Proof samples of the second theorem in the pragmatic and intellectual proofs 

Levels 

The responses to the third theorem suggested that those who gave an intellectual proof generally proved the theorem 
irreversible and that they did not take the necessity of reversible into account in the presentation of the equation. An 
example of this would be the proof written by S1. On the other hand, those who provided a pragmatic proof started out 
their proof-writing in error, as they were unable to properly understand the notion of Cartesian product. The proof 
written by S47 used the three special sets selected and showed the distributive property on the associative operation of 
the Cartesian product but did not provide a proof. The proof written by S32 was an example of demonstration proof. S32 
chose the direct method of proof and was able to properly use mathematical language and the definitions of Cartesian 
product. Examples of proofs written for the third theorem are presented in Figure 5.  

The proof written by S32 is an example of 
demonstration proof. 

The proof written by S1 is an example of intellectual 
proof. 

 

 

 

 

 

 

 

                    The proof written by S47 is an example of pragmatic proof. 

Figure 5. Proof samples of the third theorem at all three levels 

The distribution of the responses to the fourth theorem according to the three levels was as follows: demonstration proof 
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Table 2. Descriptive data related to proof writing levels and the results of the one-way analysis for variance  

Proof Writing Levels Sd N 
Demonstration proof 9.08 1.01 9 
Intellectual proof 6.15 1.15 26 
Pragmatic proof 4.72 1.67 18 
Source of Variance Sum of Squares df F 
Between groups 109.797 2 30.84 
Within groups 88.99 50  
Total  198.792 52  

The mean scores indicated a difference, in terms of their logical thinking scores, among the prospective teachers who 
had varying levels of proof-writing, and the difference favored those writing proofs at the level of demonstration proof 
(Table 2). A one-way ANOVA was conducted to test the significance of the difference. The results suggested that the 
prospective teachers’ logical thinking scores significantly differed depending on the degrees of proof-writing level 
[F(2-50)=30.84; p<.05]. A Scheffe’s test, which is a multiple comparison test, was conducted to identify the source of 
the difference for the value F (Büyüköztürk, 2006). Table 3 presents the results of the Scheffe’s test.  

Table 3. Results of the scheffe test regarding the logical thinking scores of prospective teachers 

(I) Proof Writing Levels (J) Proof Writing Levels (I-J)Mean Difference p 
Pragmatic proof Intellectual proof -1,43 .000 
Pragmatic proof Demonstration proof -4,27 .000 
Intellectual proof Demonstration proof -2,84 .000 

Those prospective teachers who wrote proofs at the level of demonstration had higher logical thinking scores when 
compared to those who provided intellectual or pragmatic proofs (Table 2). In other words, the participants writing 
proofs at the level of demonstration had the highest logical thinking scores, whereas those providing pragmatic proofs 
had the lowest logical thinking scores. To sum up, when the degree of proof-writing level increased, so did the logical 
thinking scores.  

4. Conclusion, Discussion and Implications 

As a result of the study, the distribution of the proofs written by the prospective mathematics teachers to the theorems 
was as follows: pragmatic proofs (35%), intellectual proofs (49%) and demonstration proofs (16%). According to this 
result, most of the prospective teachers could write either intellectual or pragmatic proofs. These proofs were in the 
form of giving unrelated responses to the theorems, using numerical examples and experimental arguments or being 
unable to finalize the proof despite logical attempts based on formulation. The finding is also supported by the results of 
Özer and Arıkan (2002).  

Most of the prospective teachers did not know the meaning of proof and considered their numerical examples or 
definitions as proofs. According to the examples of proofs provided by the prospective teachers regarding the fourth 
theorem, they assumed they had finalized their proofs by simply writing the definition of 1-1. Similarly, Raman (2001) 
reported that students tend to base their proofs on formal definitions, consider a solution more valid in the presence of 
formal definitions and have difficulty in distinguishing accurate proofs from inaccurate ones. Likewise, Jones (2000) 
demonstrated that mathematics teachers have a weak concept of proof. Furthermore, most of the prospective teachers 
writing intellectual proofs based their proofs on a deductive or inductive approach and failed to finalize their proofs. 
Presumably, the reason for this was that they attempted to follow a similar path to pre-memorized proofs without 
comprehending the logic of proofs. In fact, most of the intellectual proofs regarding the theorem “please write the 
irrationality of the expression 32  ” suggested that the prospective teachers simply copied the irrationality of 2  
and 3 in the same manner as they had learned in the Analysis course, yet they failed to come up with a similar way to 
write a proof concerning the expression 32  . A similar finding was reported by Moralı, Uğurel, Türnüklü 
&Yeşildere (2006), who noted that prospective teachers memorize proofs without understanding the logic of the 
theorems and proofs they have learned throughout their educational life.  

Secondly, there was a significant difference, in terms of their logical thinking skills, among the prospective teachers 
who had varying degrees of proof-writing level. It was noteworthy that those prospective teachers who wrote proofs at 
the level of demonstration had higher logical thinking scores when compared to those providing intellectual or 
pragmatic proofs, evidence suggesting a positive difference between the logical thinking skills and the proof-writing 
levels. The finding is supported by research in the literature (Johnson & Lawson, 1998; Lawson, 1992; Oliva, 2003).  

Development of an understanding into the notion of proof is a central objective of school mathematics, especially in 
elementary mathematics education (Coe & Ruthven, 1994; Selden & Selden, 2009). The role of proof is to enhance 
mathematical understanding (Selden & Selden, 2009). Moreover, proof not only fosters students’ analytical and logical 
thinking skills but also provides them with opportunities to practice with their mathematical ideas (Herbst, 2002). 

X
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Despite the role and significance of proofs in mathematics, it is well known that prospective teachers have severe 
difficulties in conducting proofs during the course of their university life and that their strategies for proving are 
generally insufficient (Almeida, 2000; Weber, 2001).  

Studies have focused to identify the proof writing levels of prospective teachers and to reveal the difference between 
varying proof writing levels and logical thinking skills. In Turkey and also in literature there are only a few studies 
about investigation of the relation between proof writing levels and logical thinking skills. Because of the logic and 
logical thinking skills are important for proving, it is necessary to empower prospective teachers to have the confidence 
in proving logically. This research focused on it in order to determine prospective teachers more about logical thinking 
and to transition more smoothly into mathematical proofs. The implication of this research field of mathematics 
education is that it provides scaffolding for the prospective teachers to determine and teach how to write Balachef’s 
proof writing levels acording to their logical thinking skills.  

In this context, it is recommended that further studies be conducted on reasoning skills and proof-writing skills and 
levels so as to overcome difficulties students have in their proving attempts. In addition, students would perhaps benefit 
from the establishment of appropriate, stimulus-rich environments to improve their logical thinking skills.  
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