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Abstract 

This study examines the factors that determine airfare pricing on the route from Denver (DEN) to Los Angeles (LAX), 

including the return trip. This is a pair of cities with distinct economic backgrounds. We analyze a dynamic panel 

dataset spanning 22 years from 2002 to 2023 to examine how various firm-level, industry-level, and macroeconomic 

indicators affect airfare. The country's major carriers, Delta Airlines and Southwest Airlines, employ a unique pricing 

strategy that enhances fare competitiveness on this route, as evidenced by the influence of HHI (i.e., 

Herfindahl-Hirschman Index). Although this market is an oligopoly and conventional wisdom suggests that higher 

concentration would lead to higher prices, we observe this effect only partially. We also observe evidence of unique 

characteristics of airlines. 

Keywords: Airfare, Airline Industry, Economic Factors, Market Power 

1. Introduction 

Airfare pricing is not merely a reflection of supply and demand but a result of the dynamic interaction of several 

economic factors, both macro and firm-level. Consideration is given to operational costs, passenger demand, market 

structure, and strategic positioning. Simultaneously, economic growth, regulation, and trends in travel and tourism are 

considered to be vital factors. The US air carrier market structure is oligopolistic. However, intense competition still 

exists in many sectors. This study aims to deepen the understanding of pricing and its relation to market power. 

Different routes have different characteristics regarding the number of passengers who travel on them and the prices 

charged. Airlines often try to leverage that to secure financial sustainability and market share. For example, all four 

major US carriers added special flights for the Super Bowl. An American Airlines spokesperson told a popular news 

outlet in February 2024, ―The excitement surrounding this year‘s sporting events has never been greater.‖ Both one-off 

events and seasonal events affect the way airlines operate in given sector routes. 

This research analyzes economic determinants—jet fuel costs, passenger numbers, regional economic activity (GDP), 

and competition (measured by the Herfindahl-Hirschman Index (HHI)) — to examine their impact on airfares. While 

passenger numbers and economic activity drive demand, HHI and competition levels, as well as crude oil prices, effect 

resource prices and, in turn, supply. Fuel and labor are among the most significant expenses for airlines. Labor costs are 

determined from wages and the state of the economy. Higher volatility in resource prices leads to greater uncertainty, in 

availability and pricing. Figure 1 below shows the trend and fluctuations in the price of one such resource - jet fuel, 

from 2002 to 2023. Its associated volatility is measured as the standard deviation of 500 weekly price observations 

(FRED, 2025). Some notable moments observed in Figure 1 include the volatility in jet fuel prices right before the 2008 

crash and in 2022 due to Russia‘s invasion of Ukraine. Volatility is calculated as the rolling standard deviation of the 

log (ratio of intertemporal fuel prices) and indicates the level of uncertainty or risk in fuel prices. Such fluctuations can 

significantly impact operational costs in the aviation sector. 
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Figure 1. Jet Fuel Price and Volatility (standard deviation) with time. 

Source: U.S. Energy Information Administration, Kerosene-Type Jet Fuel Prices: U.S. Gulf Coast (FRED, 2025) 

In this paper, we focus on the route connecting Denver (DEN) to Los Angeles (LAX), considering passenger travel in 

both directions over the period 2002 - 2023. Each city exhibits distinct operational characteristics: Denver boasts a 

balanced presence of legacy carriers and low-cost carriers (LCCs) (such as United, Delta, American, and Southwest), 

alongside ultra-low-cost carriers (ULCCs) like Frontier and Spirit. This diversity fosters a robust competitive 

environment for airlines operating at Denver. Figure 2 depicts the share of passengers by each airline at Denver 

International Airport in December 2019. One can observe that Southwest and United accounted for nearly 60% with 

Frontier capturing another 13% of the passenger share. 

 

Figure 2. Percentage Passenger Shares by Each Airline Type for DEN in December 2019 

(Source: Bureau of Transportation Statistics) 

Contrastingly, the Los Angeles market is characterized by the dominance of the top 4 US carriers — American, Delta, 

United, and Southwest — and by somewhat higher entry barriers. Figure 3 Illustrates the distribution of passenger 

shares by airline at Los Angeles International Airport (LAX). The consumer base at LAX is considerably more diverse 

than that at Denver, thereby resulting in a different competitive landscape and somewhat unique pricing dynamics, 
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which is a key rationale for focusing on this route. Unlike a hub such as Atlanta (ATL), where Delta Airlines holds a 

commanding presence, the Denver–Los Angeles route offers greater diversity in carrier competition, thereby enabling a 

richer examination of market dynamics and pricing effects. 

 

Figure 3. Percentage Passenger Shares by Each Airline Type for LAX in December 2019 

(Source: Bureau of Transportation Statistics) 

In an era where economic resilience is paramount, carriers are compelled to adapt to market volatility, including 

fluctuations in fuel costs, regulatory changes, and dynamic competitive pressures that shape fare structures. The unique 

contribution of this paper is that it analyzes a dataset spanning the years before, during, and after the COVID-19 

pandemic—a period marked by unprecedented disruptions. Throughout this timeline, airlines faced diverse challenges, 

leading some to reduce or suspend operations temporarily, others to cut capacity, and yet others to lay off workers. 

Adding to this was the steep rebound in air travel, particularly for leisure, that followed the pandemic. The analytical 

model developed herein explicitly accommodates these anomalies, providing a timely perspective on how airlines 

recalibrated their pricing strategies in response to fundamental shifts in route characteristics and the evolving ―new 

normal.‖ 

Our research aims to provide actionable, data-driven insights to industry participants, regulators, and policymakers to 

optimize fare structures, enhance consumer welfare, and foster a competitive, sustainable aviation industry. This paper 

significantly enriches the literature on airline economics by closely examining airfare pricing mechanisms, a vital aspect 

of the industry's strategic success. 

2. Background 

The U.S. airline industry, emblematic of intense competition and high volatility, sits at the heart of the nation's 

economic infrastructure. The strategic maneuvers in this sector have far-reaching implications for many stakeholders, 

including passengers, government agencies, airlines, and regulatory bodies, as well as regional economies. Airline 

pricing strategies are intricately tied to the company's internal decision-making processes, particularly in revenue 

management and cost reduction. However, these strategies are also profoundly influenced by three major external 

factors that significantly impact the formulation of air ticket prices: market structure, customer demand, and operational 

factors (Hospodka & BEng, 2013). Airlines operate within a complex framework of operational costs, consumer 

demand, competitive pressures, and regulatory oversight. The pricing of airfares, especially on high-traffic routes such 

as Denver to Los Angeles, is a key strategic tool that can influence a carrier's competitive edge. The ability to navigate 

these factors and set optimal prices is more than a seasonal or financial imperative—it determines an airline's ability to 

grow, capture market share, and sustain operations.  

In the airline industry, the primary cost factors for carriers are salaries and fuel expenses. This cost component is 

susceptible to market fluctuations and often reflects broader economic trends. A 2017 comparison between full-service 

and low-cost carriers for a typical narrow-body aircraft shows that full-service carriers incur higher costs in both these 

areas. Full-service carriers have an average cockpit crew salary of $120,000 with a 35% benefit load, compared to 

$100,000 with a 25% benefit load for low-cost carriers. Similarly, fuel expenses are slightly higher for full-service 
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carriers at $820 per block hour, as opposed to $800 for low-cost carriers (McKinsey & Company, 2017). These 

disparities in salaries and fuel costs contribute significantly to the overall cost per available seat kilometer, with 

full-service carriers averaging 8.19 cents compared to 4.71 cents for low-cost airlines, reflecting the different 

operational efficiencies and market strategies of the two business models. 

When demand for air travel is robust, airlines find it easier to absorb variable costs, as higher passenger revenue 

generally offsets these costs even with thinner margins. However, this balance is disrupted by the inflexible nature of 

airline schedules. Airline capacity often accounts for a substantial portion of an airline's overall costs, as fixed costs 

cannot be easily adjusted in the short term. Conversely, variable costs — such as airport charges, security fees, catering, 

distribution, and marginal fuel costs—constitute a relatively minor share of the financial burden. This contrast between 

fixed and variable costs underscores the critical importance of strategic capacity management and pricing decisions. 

(Grimme, Maertens, & Bischoff, 2011).  

A deep understanding of pricing dynamics is vital for airline executives and researchers alike, as it plays a critical role 

in decisions related to capacity management, route selection, and the development of targeted marketing campaigns. 

Market forces such as size, level of economic activity, standard of living, and degree of concentration are significant 

factors shaping an airline's pricing strategy. Additionally, the pricing disparities between full-service carriers (FSCs) and 

low-cost carriers (LCCs) are essential considerations that reflect differing business models and value propositions. The 

regulatory role of flagship airlines on routes can serve as a benchmark, influencing ticket prices across the board 

(Kiarashrad, Pasandideh, & Mohammadi, 2020). It is vital to explore these intricacies through a real-case analysis, 

offering practical insights that could enhance our understanding of the pricing power of commercial airlines in domestic 

markets. The route we have chosen for this purpose fits that requirement. 

Figure 4 shows the Domestic market share of leading U.S. airlines from February 2022 to January 2023. Sales dipped 

after the COVID-19 pandemic but bounced back relatively quickly after restrictions were lifted. Furthermore, the 

leisure travel rebounded more quickly than business travel, as captured in our study of the Los Angeles-Denver route. 

Market share and pricing power are two factors that are integral to an airline's success, with the former reflecting 

competitive status and ability to influence fares—both are pivotal in determining the company's financial robustness and 

strategic dominance. In the post-pandemic era, the U.S. airline industry is at crossroads of making strategic decisions 

about immediate recovery and long-term resilience. 

 

Figure 4. Domestic market share of leading U.S. airlines from 2022-02 to 2023-01 (Source: (Statista , 2023)) 

Airports in North America recovered from the shocks of COVID-19 faster than those in Europe (Oliver Wyman, 2022). 

The elements influencing airfare pricing on specific routes highlight the broader challenges and opportunities that 

airlines face in this new landscape. As such, this study does not merely seek to identify the factors affecting airfare; it 

also endeavors to interpret the evolution of an airline's pricing strategy, keeping in mind the idiosyncratic nature of a 

route and its characteristics. Our analysis focuses on a route with no dominant players. Market share is distributed 

between legacy and low-cost carriers, between hub and non-hub destinations, and in a notable decision by a low-cost 

carrier to exit the market altogether. It is for this reason that the city pair of DEN (Denver) and Los Angeles (LAX) has 

been picked as a representative case for such analysis, which, to the best of our knowledge, has not been studied in the 
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past.  

3. Determinants of Air Transportation Demand and Supply 

Previous studies on the determinants of airfare pricing have reflected the complexity of the airline industry's operational, 

strategic, and economic dimensions. These studies have focused on demand-related factors such as income, nature of 

travel, and flier demographic characteristics at origin and destination, but also supply factors, such as the number of 

airlines operating in a market, fuel price, employee wages, and market structure, as well as the extent and influence of 

competition. Early investigations, such as the seminal work in 1989 by Borenstein scrutinized how market dynamics 

shape fare levels and variance (Borenstein, 1989), uncovering a relationship between an airline's market control and 

higher fares. Subsequent analyses suggest that additional factors, including passenger composition and aircraft capacity, 

must be considered. (Lee & Luengo-Prado, 2005) and (Gerardi & Shapiro, 2009). An examination of price premiums in 

response to competition from budget airlines further expanded this  (Hofer, Windle, & Dre, 2007). This study found 

that the occurrence of such premiums among consumers decreased following the entry of budget carriers into the 

market. However, none of these have examined a market in which a legacy carrier has actively sought to grow its 

market share. 

Demand estimation is typically based on utility maximization of a representative consumer (Garrow, 2007) and 

(Ben-Akiva & Lerman, 1985 ). In this process, the relevant variables that are used to identify with air traffic demand on 

that route or sector for a given period of time are categorized into three main groups (Vandermotten & Dobruszkes , 

2022). Macroeconomic factors such as GDP, population size, and trade volumes determine the extent of air travel in an 

economy. Consumer-specific variables, such as demographic data, social and economic characteristics, including GDP 

per capita, distribution of skilled workers, age, and rural/urban population, are often used to determine demand (Abel, 

Dey, & Gabe, 2012). The third set of variables includes geographical attributes, such as climate, seasonality, proximity 

to alternative major airports, and availability of alternative modes of transport, such as high-speed rail and road 

transportation, which can also determine the extent of air-travel preference on a given route (Wang, Zhang, & Zhang, 

2018). While this framework is widely accepted, recent studies have sought to broaden its scope by incorporating 

additional elements, such as intermodal competition, cultural factors, and supply-side attributes, including service 

frequency and competitor fare levels. (Wang, Xia, Zhang, & Zhang, 2018). Our contribution to this study is to 

incorporate the evolution of a general equilibrium model by studying demand and supply characteristics, conditioning 

on route and traveler type. 

Airlines frequently employ yield management techniques to boost profits (Siegert & Ulbricht , 2020). This approach is 

particularly popular for understanding sectors driven by seasonal demand, such as tourism, seasonal goods, and the 

fashion industry. In these sectors, goods are perishable, and capacity is determined in advance. In aviation, the costs 

prior to the departure of a flight are significantly higher than the costs after a flight‘s departure, because the airline‘s 

choice variables are narrowed down to fuel and operating costs. An effective pricing model can significantly enhance 

revenue, potentially by 2.0 - 5.0% (Zhao & Zheng, 2000). The structure of optimal pricing in aviation has been the 

focus of various studies, addressing demand for a product that cannot be sold after a specific time. (Gallego & Van 

Ryzin, 1994) and management of demand with inventory and price monotonicity, which applies to the perishability of 

the product once the aircraft has taken off (Zhao & Zheng, 2000). 

Addressing the operational aspects, it is noted that the absence of economies of scale, stage length, and fleet 

commonality affects operating costs. Interestingly, newer fleets may not necessarily lead to lower costs due to higher 

ownership expenses (Zuidberg, 2014). This introduces a complex dimension to the cost-benefit analysis of fleet 

modernization. During the early 2000s, the U.S. airline industry was tumultuous, marked by heightened price sensitivity 

and a distinct consumer preference for nonstop flights (Berry & Jia, 2010). The structural shifts in demand and supply 

during this era elucidated the intricate balance airlines must navigate to remain profitable. The granularity of market 

segmentation and dynamic pricing mechanisms is highlighted in subsequent studies that explain airlines' multifaceted 

approach to discriminating prices based on various factors, including purchase timing and their own market power at a 

given airport and route. This segmentation allows airlines to capitalize on late-market consumers, showcasing the 

strategic use of dynamic pricing to optimize revenue (Gu, 2022). 

While many factors may affect fares, it is found that advance-purchase days, city-direct distance, market size, market 

structure, and number of tickets sold are among the most crucial pricing factors. Specifically, airlines first segment their 

markets into multiple periods (i.e., early versus late) and further split the market by city-direct distance and 

demographics (i.e., age, income, destination natural features). Price discrimination is also based on the day of purchase 

identified, suggesting that airlines adjust prices to target the more price-elastic leisure travelers who tend to book on 

weekends (Puller & Taylor, 2012). This behavior underscores the airlines' agility in responding to consumer purchasing 

patterns to maximize profits. The impact of the internet on airline pricing also garners attention, with findings 

suggesting that online purchasers benefit from lower fares (Sengupta & Wiggins, 2014). Yield management in 
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e-commerce sheds interesting light on access to and control over key resources, leading to market power. (Gabor, 

Kardos, & Oltean, 2022) study the importance of strategic pricing and resource control in attracting customers at the 

right time. This phenomenon has only grown in importance amid the challenges posed by the COVID-19 pandemic. 

The trends in global service connectivity and air passenger flows underscore the critical role of connectivity measures, 

aligning closely with the findings that stress on the role of airline networks and passenger volume in determining airfare 

pricing (Taylor, Derudder, & Witlox, 2013). In our research, we explore the idea of cities being "underserved" or 

"over-visited" by airlines, analyzing these conditions through market concentration using the Herfindahl-Hirschman 

Index (HHI) to assess airline dominance at a given point in time. We then assess how concentration impacts fare levels, 

reinforcing the intricate relationship between supply, demand, and the dynamics of network society in the air travel 

industry. In addition, the gravity model identifies the pivotal role of low-cost carriers (LCCs) and ethnic links in 

enhancing demand for air travel (Boonekamp, Zuidberg, & Burghouwt, 2018). After accounting for demand, 

competitive pressure from LCCs has a positive impact on passenger demand. 

All the factors discussed above can be amalgamated into gravity models (Krugman, Obstfeld, & Melitz, 2021), wherein 

a Cobb-Douglas specification is used to transform structural equations of demand and supply into a reduced form 

(Wang et al., 2018). The development of gravity models also focuses on economic activity (GDP) and region-specific 

geographical characteristics such as catchment, distance, and travel time, (Tobias, Rothlauf, & Heinzl, 2007). Similar 

results were also obtained for the geographical region of Turkey (Sivrikaya & Tunç, 2013). Another important 

determinant is income growth and how income growth has contributed to the growth in passenger demand (Valdes, 

2015). Even in smaller markets, the role of market size and proximity of major hub airports is crucial in determination 

of passenger volumes (Goff, 2005).  

Furthermore, analysis of the US feeder airline industry structure and the partnerships between full-service and regional 

carriers provides empirical evidence on the operational strategies and network organization that underlie models‘ focus 

on airline-specific impacts (e.g., United, Frontier, American, Delta) on airfare levels (Reynolds-Feighan, 2018). Market 

structure and function are fundamental in shaping airline scheduling and service delivery, playing a pivotal role in 

strategic competition and cooperation among airlines. These elements influence fare structures, especially when 

exploring legacy carriers' outsourcing decisions and focusing on competitive effects arising from such partnerships, 

particularly in response to route competition from LCCs, and on the competitive dynamics between legacy and regional 

airlines. The lower airfares on outsourced routes resonate with fare impacts driven by airline business models and 

market competition (Tan, 2019). 

4. Model  

The model we base this study on is similar to the one described by (Berry, Levinsohn, & Pakes, 1995). The demand 

specification is based on the utility derived by the customer traveling on airline ‗i' at time ‗t‘ given as:  

 𝑢𝑖,𝑡 = 𝑓(𝑃𝑖,𝑡 , 𝐼𝑛𝑐𝑡 , 𝑃−𝑖,𝑡)   (1) 

Where, 

𝑷𝒊, : Price paid by a consumer 

𝑰   : Income of the consumer 

𝑷−𝒊, : Price charged by substitute airline for the same route derived from the utility of an outside good. 

This allows us to use the structural airline demand and supply framework with price (airfare) and quantity (PAX) as the 

standard variables.1 

4.1 Demand Analysis 

The demand for air transport for airline ‗i' during period ‗t‘, represented as  𝑖𝑡− , is considered to be affected by the 

airfare     𝑖,𝑡, the gross domestic product of the origin/ destination state of Colorado or California (    𝑃𝑡 or 

    𝑃𝑡 respectively), and the real disposable income 𝐼  𝑡. It is expected that a decrease in airfare     𝑖,𝑡 would 

typically lead to an increase in flight demand, ceteris paribus. An increase in either or both of Colorado's GDP at time ‗t‘ 

(    𝑃𝑡) or California GDP at time ‗t‘ (    𝑃𝑡) would reflect a stronger economy, potentially translating to a higher 

demand for flights due to the procyclical nature of travel activity. Also, for the same reason, a higher real disposable 

income at time ‗t‘ (𝐼  𝑡) should similarly increase demand, giving consumers greater capacity to allocate spending to 

air travel. 

                                                        
1 This can also be used empirically to be estimated as 2-stage least squares model, which we will discuss in the results 

section 
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From this framework, we estimate a demand model as follows: (need to be consistent for ‗i' and ‗t‘) 

 𝑸𝒊, −𝑫 = 𝑭(𝑭𝑨𝑹𝑬𝒊, , 𝑪𝑶𝑮𝑫𝑷 , 𝑪𝑨𝑮𝑫𝑷 , 𝑰𝑵𝑪 ) (2) 

Seasonality, or the time of year, also plays a role in air travel, particularly on this route, as Denver serves as a popular 

destination for winter recreation. 

4.1 Supply Analysis 

The supply of airline seats at time ‗t‘ ( 𝑖𝑡− ) also adjusts simultaneously to economic incentives and market conditions. 

But for now, we will consider it separately for theoretical purposes. As jet fuel prices at time ‗t‘ denoted as      𝑡
2 

rise, airlines tend to adjust their supply by reducing flight frequency or by raising airfares to offset heightened 

operational expenses. Airline-specific market share3 at time ‗t‘ (𝑃       𝑖,𝑡), and market concentration as measured 

by Herfindahl-Hirschman Index (HHI) market concentration at time ‗t‘ (  𝐼𝑡) are also critical determinants of ways in 

which airlines respond to the dynamic market conditions and adjust the availability of seats and that are not linked 

directly with passengers (demand). An airline's dominance in market share suggests its capacity to supply more seats, 

raise prices, or leverage economies of scale to drive prices down. Meanwhile, a higher HHI, indicating less competition, 

may lead to less price-sensitive supply, allowing airlines with significant market power to maintain higher fares without 

significantly altering supply levels. It may also encourage airlines to merge to realize greater economies of scale and 

lower prices. This leads us to create a supply function as follows: 

 𝑸𝒊 −𝑺 = 𝑭(𝑭𝑨𝑹𝑬𝒊, , 𝑱𝑭𝑼𝑬𝑳 , 𝑷𝒂𝒙𝑺𝒉𝒂𝒓𝒆𝒊, , 𝑯𝑯𝑰 )  (3) 

This equation suggests that the number of seats an airline sells at any time is influenced by a mix of market conditions 

(economic health and competition), operational costs (fuel prices), and the airline's specific circumstances (market 

share). The model may predict how changes in these factors would affect seat sales, which is essential for strategic 

planning in the airline industry. 

5. Empirical Model 

As discussed previously, gravity models allow us to simultaneously use demand and supply functions within a general 

equilibrium framework. This enables us to use a Cobb-Douglas specification based on maximizing consumer utility and 

minimizing producer costs (Oum, Waters, & Yong, 1992). More specifically, Wang, Zhang, and Zhang (2018) use the 

reduced form of the Cobb-Douglas specification to illustrate the own-price, cross-price, and income elasticities.4 This 

also allows us to determine the sensitivity of parameters to price for our sample with this empirical specification. 

The empirical specification that can be used in reduced form to be estimated is as follows: 

 𝒍𝑭𝑨𝑹𝑬𝒊,  =  𝜷̂𝟎 +  𝜷̂𝟏𝒍𝑷𝑨𝑿𝒊,  +  𝜷̂𝟐𝒍𝑱𝑭𝑼𝑬𝑳𝒊,  +  𝜷̂𝟑𝒍𝑪𝑨𝑮𝑫𝑷  +  𝜷̂𝟒𝒍𝑪𝑶𝑮𝑫𝑷  +  𝜷̂𝟓𝒍𝑰𝑵𝑪 + 

  𝜷̂𝟔𝒍𝑨𝑪𝑪𝑫 ++𝜷̂𝟕𝒍𝑯𝑯𝑰 + 𝜷̂𝟖𝒍𝑭𝒍𝒆𝒈𝒂 𝒚 + 𝜷̂𝟗𝒍𝑭𝒍   + ∑ 𝜹𝒋𝑨𝒋,  
𝟕
𝒋=𝟏 + ∑ 𝑸𝒌

𝟑
𝒌=𝟏   (4) 

This regression model is designed to estimate a Cobb-Douglas relationship between the logarithm of average airfare 

(    ) and several explanatory variables that are believed to influence it, where: 

     𝑖,𝑡: The dependent variable is the natural log of the average airfare. 

 𝑃  𝑖,𝑡: Logarithm of passenger volume per day. This could reflect demand: more passengers might lead to higher prices, 

or it could indicate economies of scale that reduce prices. 

      𝑖,𝑡: The logarithm of jet fuel price. Fuel costs could lead to higher airfares as airlines pass them on to consumers. 

     𝑃𝑡The logarithm of real GDP of California. Economic health could influence airfare prices through demand. 

                                                        
2 We used Real Jet Fuel Price (Kerosene Type) deflated to 2023 dollars 

3 Market share is defined as percentage of number of passengers that flew with a given airline as a ratio of total number 

of passengers that flew on the same route for that period of time 

4 Our specification is different from (Wang, Zhang, Zhang, 2018) in the sense that instead of using geometric mean of 

origination-destination GDP (O-D) pair we instead isolate the effects of these variables to determine if these have 

differing effects. 
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     𝑃𝑡: The logarithm of real GDP of Colorado. A healthier economy might stimulate demand for air travel, potentially 

boosting prices. 

 𝐼  𝑡: Logarithm of real disposable income. The significance of disposable income is that income could increase or 

decrease the demand for air travel, potentially affecting airfare prices. 

     𝑡: Logarithm of employment rate in the accommodation sector, capturing the influence of the travel and lodging 

industry‘s health on airfare pricing by reflecting the sector‘s demand for travel services and associated economic activity. 

         : Logarithm of Average fare index for U.S. legacy carriers, capturing the pricing trends and competitive 

positioning of established airlines within the market. This was calculated using the weighted average of fares paid by 

passengers who traveled using legacy carriers during that period. 

      : Logarithm of average fare index for low-cost carriers, indicating how price competition and cost-effective 

operational models of these airlines influence airfare levels. This was calculated using the weighted average of fares paid 

by passengers who traveled using low-cost carriers during that period. 

   𝐼𝑡: The logarithm of the Herfindahl-Hirschman Index for market concentration calculated using market shares from 

below.  

  ,𝑡,: The market share of each airline (j) at time ‗t‘, represented by different airlines such as United Airlines (UA), 

Frontier Airlines (F9), American Airlines (AA), Delta Air Lines (DL), Spirit Airlines (NK), and Southwest Airlines 

(WN). These terms capture the individual market-share impact of each airline on airfare prices, calculated from passenger 

data over a given period. 

  : United Airlines market share j=1 

  : Frontier Airlines market share j=2 

  : American Airlines market share j=3 

  : Delta Air Lines market share j=4 

   Spirit Airlines' market share j=5 

  : Southwest Airlines market share j=6. 

  : Alaska airlines market share j=7 

US: US airways market share j=8 

  : dummy variable for the requisite quarter (k=1…4) 

6. Data and Summary Statistics 

The empirical analysis in this study is supported by a comprehensive dataset from January 1, 2002, to September 1, 

2023, encompassing 474 observations. Some of these observations were for different classes on the same airline and 

were averaged based on the number of passengers who paid that price. The data have been collated from multiple 

sources. Passenger share and fare data are sourced from the DIIO Cirium (DIIO Mi, 2023) website, which allows us to 

calculate each airline's (UA, F9, AA, DL, AS, NK, WN) market share on the Denver (DEN) to Los Angeles (LAX) 

route, along with corresponding airfares. Thus, market share is defined as the number of passengers traveling with a 

given airline during a given period, divided by the total number of passengers who traveled on that route during that 

period. Operational cost data, including jet fuel prices, alongside GDP figures for Colorado (COGDP) and California 

(CAGDP) were obtained from the database of the Federal Reserve Bank of St. Louis (Federal Reserve Bank of St. 

Louis, 2023), (FRED).5 HHI was calculated using the market shares obtained above.  

                                                        
5 All price-related (dollar valued) data—jet fuel prices, disposable income, COGDP, and CAGDP—have been adjusted 

for inflation. 
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Table 1a illustrates the descriptive statistics of our dataset for US carriers from DEN to LAX from 2002 to 2022. Table 

1b does the same for the route LAX – DEN.  ACCD represents employment data from the Traveler Accommodation 

sector under the North American Industry Classification System6 (BLS, 2024) from Q1 2002 to Q2 2023. In examining 

the dynamics of airfare pricing, ACCD offers employment and unemployment trends within the hospital, travel, tourism, 

and accommodation industry, sourced from both employer and national household surveys. Given the connections 

between the health of the travel sector and airline pricing strategies, analyzing workforce statistics from this segment 

shows how fluctuations in employment within the travel accommodation sector may influence airfare levels. The 

Legacy and LCC fare indices provide a weighted average of the price paid by revenue-paying passengers for US legacy 

and low-cost carriers, respectively, from Q1 2002 to Q2 2023. Both indices serve as crucial indicators of how shifts in 

the pricing approaches of these distinct airline categories affect the overall airfare landscape for the DEN-LAX city pair 

and how average fares influence consumer fare options.  

Table 1a. Descriptive Statistics dataset from Denver to Los Angeles, 2002 – 2022 

Statistic N Mean St. Dev. Min Max 
PAX 474 239.4 190.4 3.1 797.9 
FARE 474 177.4 59.5 24.4 398 
COGDP 474 391,806 60,788 304,444 514,223 
CAGDP 474 3,047,827 472,011 2,240,362 3,884,718 
INC 474 16,388 2,141 12,055 18,157 
JFUEL 474 2.6 1 0.9 5.1 
ACCD 474 12,030 1,304 8,875 14,289 
UA 474 0.4 0.1 0.2 0.6 
F9 474 0.2 0.1 0 0.4 
AA 474 0.1 0.05 0.03 0.2 
DL 474 0.1 0.1 0.004 0.2 
AS 474 0.01 0.01 0 0.03 
NK 474 0.03 0.04 0 0.1 
US 474 0.01 0.01 0 0.1 
WN 474 0.2 0.2 0 0.4 
HHI 474 0.3 0.04 0.2 0.4 
F_legacy 474 210.8 45.8 90 329.7 
F_lcc 474 162.8 54.4 62.9 346.2 

Source: DIIO Mi, Federal Reserve Bank of St. Louis, Bureau of Labor Statistics: Accessed 2024 

Table 1b. Descriptive Statistics of dataset Los Angeles to Denver, 2002 – 2022 

Statistic N Mean St. Dev. Min Max 
PAX 471 250 196.5 6.9 819.2 
JFUEL 471 2.6 1 0.9 5.1 
FARE 471 167.7 61.8 17.8 362.3 
CAGDP 471 3,061,612 466,691 2,240,362 3,884,718 
COGDP 471 393,594 60,260 304,444 514,223 
INC 471 16,353 2,143 12,055 18,157 
ACCD 471 12,077 1,282 8,875 14,289 
UA 471 0.4 0.1 0.2 0.6 
F9 471 0.2 0.1 0 0.4 
AA 471 0.1 0.05 0.03 0.2 
DL 471 0.1 0.1 0.004 0.2 
AS 471 0.01 0.01 0 0.03 
NK 471 0.03 0.04 0 0.1 
US 471 0.01 0.01 0 0.1 
WN 471 0.2 0.1 0 0.4 
HHI 471 0.3 0.04 0.2 0.4 
F_legacy 466 160.5 25.5 79.4 204.1 
F_lcc 461 119.2 26.9 54.9 205 

Sources: DIIO Mi, Federal Reserve Bank of St. Louis, Bureau of Labor Statistics: Accessed 2024 

 

 

                                                        
6 Workforce employment statistics are obtained from the accommodation subsector under Traveler Accommodation 

with Workforce Employment Statistics retrieved from the North American Industry Classification System (NAICS) 

7211. 
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Table 2 (parts a & b) illustrate the correlation coefficients of variables in this study. Table 2a highlights the coefficient 

for variables on the DEN–LAX route. There is a high correlation (70-73%) between overall prices and fares charged by 

legacy and low-cost carriers. Prices charged by both legacy and low-cost carriers have a strong correlation with the 

Herfindahl-Hirschman Index (69% and 78% respectively). This suggests intense price competition faced by legacy 

carriers on this route. Finally, there is a high correlation of 90% between the fare indices of legacy (F_legacy) and 

low-cost carriers (F_lcc), indicating that changes in the other closely mirror fare changes in one category of carriers. 

Table 2a. Correlation Coefficients of variables under study for the Denver to Los Angeles Route 

 

Table 2b highlights the correlation coefficients for variables on the LAX – DEN route.  Of note is a positive 

correlation of only 59% between overall fares and those charged by low-cost carriers, indicating a more substantial 

divergence in fares on this route between legacy and low-cost carrier strategies, which we will explore in this paper. 

Conversely, a negative correlation of almost 70% between Colorado's and California‘s GDP and fares charged by 

low-cost carriers suggests that, even as the economies of both states improved, price competition put pressure on these 

airlines on this route. Overall, this tells us that each route and its legs have their own characteristics. While we can make 

broad conclusions about demand for air travel, the idiosyncrasies associated with each route is a fascinating subject of 

attention and detailed analysis. 

Table 2b. Correlation Coefficients of variables under study for the Los Angeles to Denver Route 

 

7. Empirical Results 

7.1 Regression Results for DEN – LAX and LAX – DEN 

When we examine the interplay between quantity and price derived from the reduced-form equation, the airline seats 

available versus the price paid by consumers provides insights into market dynamics. As discussed before, solving for 

the utility function leads us to use log-log models to analyze pricing in the reduced-form gravity equation. The log-log 

specification allows for examining elasticity, revealing how percentage changes in passenger volume, jet fuel prices, 

and economic conditions proportionally affect airfares. This approach offers insight into the interplay among customer 

 PAX JFUEL FARE COGDP CAGDP INC ACCD UA F9 AA DL AS NK US WN HHI F_legacy F_lcc

PAX 1 0.02 0.02 0.2 0.22 -0.1 0.28 -0.22 -0.21 -0.13 0.11 -0.19 0.24 -0.07 0.24 -0.22 -0.16 -0.21

JFUEL 0.02 1 0.15 -0.06 -0.05 0.03 0.1 -0.06 0.15 -0.31 -0.3 -0.02 -0.29 0.43 0.25 0.03 0.16 0.04

FARE 0.02 0.15 1 -0.62 -0.63 0.46 -0.42 0.49 0.51 0.36 -0.53 0.39 -0.49 0.18 -0.48 0.57 0.71 0.73

COGDP 0.2 -0.06 -0.62 1 0.98 -0.84 0.72 -0.45 -0.85 -0.44 0.83 -0.5 0.57 -0.2 0.59 -0.56 -0.79 -0.84

CAGDP 0.22 -0.05 -0.63 0.98 1 -0.76 0.76 -0.53 -0.83 -0.42 0.78 -0.53 0.63 -0.17 0.62 -0.62 -0.79 -0.87

INC -0.1 0.03 0.46 -0.84 -0.76 1 -0.48 0.13 0.7 0.4 -0.85 0.3 -0.21 0.28 -0.34 0.28 0.66 0.58

ACCD 0.28 0.1 -0.42 0.72 0.76 -0.48 1 -0.47 -0.78 -0.41 0.45 -0.48 0.67 -0.06 0.65 -0.51 -0.45 -0.62

UA -0.22 -0.06 0.49 -0.45 -0.53 0.13 -0.47 1 0.31 0.47 -0.17 0.55 -0.56 -0.22 -0.81 0.86 0.5 0.7

F9 -0.21 0.15 0.51 -0.85 -0.83 0.7 -0.78 0.31 1 0.42 -0.72 0.41 -0.67 0.27 -0.58 0.38 0.62 0.67

AA -0.13 -0.31 0.36 -0.44 -0.42 0.4 -0.41 0.47 0.42 1 -0.26 0.36 -0.2 -0.28 -0.79 0.32 0.35 0.47

DL 0.11 -0.3 -0.53 0.83 0.78 -0.85 0.45 -0.17 -0.72 -0.26 1 -0.3 0.41 -0.41 0.23 -0.38 -0.73 -0.63

AS -0.19 -0.02 0.39 -0.5 -0.53 0.3 -0.48 0.55 0.41 0.36 -0.3 1 -0.42 -0.04 -0.55 0.52 0.42 0.53

NK 0.24 -0.29 -0.49 0.57 0.63 -0.21 0.67 -0.56 -0.67 -0.2 0.41 -0.42 1 -0.26 0.49 -0.63 -0.51 -0.64

US -0.07 0.43 0.18 -0.2 -0.17 0.28 -0.06 -0.22 0.27 -0.28 -0.41 -0.04 -0.26 1 0.24 -0.04 0.27 0.12

WN 0.24 0.25 -0.48 0.59 0.62 -0.34 0.65 -0.81 -0.58 -0.79 0.23 -0.55 0.49 0.24 1 -0.61 -0.46 -0.69

HHI -0.22 0.03 0.57 -0.56 -0.62 0.28 -0.51 0.86 0.38 0.32 -0.38 0.52 -0.63 -0.04 -0.61 1 0.69 0.78

F_legacy -0.16 0.16 0.71 -0.79 -0.79 0.66 -0.45 0.5 0.62 0.35 -0.73 0.42 -0.51 0.27 -0.46 0.69 1 0.9

F_lcc -0.21 0.04 0.73 -0.84 -0.87 0.58 -0.62 0.7 0.67 0.47 -0.63 0.53 -0.64 0.12 -0.69 0.78 0.9 1

 PAX JFUEL FARE COGDP CAGDP INC ACCD UA F9 AA DL AS NK US WN HHI F_legacy F_lcc

PAX 1 0 0.22 0.16 0.18 -0.07 0.28 -0.15 -0.2 -0.04 0.08 -0.16 0.22 -0.09 0.16 -0.16 -0.03 -0.13

JFUEL 0 1 0.17 -0.08 -0.06 0.04 0.07 -0.06 0.18 -0.32 -0.32 -0.01 -0.32 0.42 0.24 0.04 0.42 0.26

FARE 0.22 0.17 1 -0.5 -0.5 0.37 -0.32 0.37 0.42 0.19 -0.43 0.28 -0.42 0.17 -0.32 0.49 0.46 0.59

COGDP 0.16 -0.08 -0.5 1 0.98 -0.82 0.74 -0.46 -0.86 -0.37 0.81 -0.5 0.58 -0.2 0.56 -0.58 -0.35 -0.7

CAGDP 0.18 -0.06 -0.5 0.98 1 -0.74 0.78 -0.53 -0.84 -0.35 0.76 -0.53 0.64 -0.18 0.6 -0.64 -0.34 -0.73

INC -0.07 0.04 0.37 -0.82 -0.74 1 -0.45 0.14 0.68 0.34 -0.83 0.29 -0.19 0.29 -0.31 0.3 0.36 0.45

ACCD 0.28 0.07 -0.32 0.74 0.78 -0.45 1 -0.51 -0.76 -0.36 0.43 -0.49 0.66 -0.06 0.65 -0.54 0.02 -0.44

UA -0.15 -0.06 0.37 -0.46 -0.53 0.14 -0.51 1 0.34 0.47 -0.17 0.57 -0.58 -0.21 -0.82 0.86 0.16 0.65

F9 -0.2 0.18 0.42 -0.86 -0.84 0.68 -0.76 0.34 1 0.35 -0.7 0.41 -0.67 0.29 -0.57 0.41 0.22 0.53

AA -0.04 -0.32 0.19 -0.37 -0.35 0.34 -0.36 0.47 0.35 1 -0.17 0.34 -0.14 -0.3 -0.78 0.3 -0.11 0.23

DL 0.08 -0.32 -0.43 0.81 0.76 -0.83 0.43 -0.17 -0.7 -0.17 1 -0.28 0.4 -0.41 0.17 -0.4 -0.55 -0.58

AS -0.16 -0.01 0.28 -0.5 -0.53 0.29 -0.49 0.57 0.41 0.34 -0.28 1 -0.42 -0.03 -0.56 0.53 0.12 0.45

NK 0.22 -0.32 -0.42 0.58 0.64 -0.19 0.66 -0.58 -0.67 -0.14 0.4 -0.42 1 -0.28 0.47 -0.64 -0.3 -0.66

US -0.09 0.42 0.17 -0.2 -0.18 0.29 -0.06 -0.21 0.29 -0.3 -0.41 -0.03 -0.28 1 0.24 -0.02 0.42 0.24

WN 0.16 0.24 -0.32 0.56 0.6 -0.31 0.65 -0.82 -0.57 -0.78 0.17 -0.56 0.47 0.24 1 -0.6 0.06 -0.48

HHI -0.16 0.04 0.49 -0.58 -0.64 0.3 -0.54 0.86 0.41 0.3 -0.4 0.53 -0.64 -0.02 -0.6 1 0.46 0.79

F_legacy -0.03 0.42 0.46 -0.35 -0.34 0.36 0.02 0.16 0.22 -0.11 -0.55 0.12 -0.3 0.42 0.06 0.46 1 0.72

F_lcc -0.13 0.26 0.59 -0.7 -0.73 0.45 -0.44 0.65 0.53 0.23 -0.58 0.45 -0.66 0.24 -0.48 0.79 0.72 1
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characteristics, market competition, and macroeconomic conditions, thereby providing valuable guidance on optimal 

pricing strategies and market dynamics in this sector. 

We use different models to progressively incorporate a broader spectrum of variables to capture the multifaceted nature 

of air travel demand and pricing. The main model captures the effects of quantity (number of passengers) and jet fuel 

prices on airfare paid. Gross Domestic Product for California (CAGDP) and Colorado (COGDP) offer insights into the 

economic backdrop influencing travel behaviors and fare structures. Additionally, the inclusion of all employees in the 

accommodation and food services sector (ACCD) underscores the vitality of the leisure and hospitality industry. It 

serves as a proxy for a supply factor in the empirical equation. The GDPs of Colorado (COGDP) and California 

(CAGDP) also serve as proxies for the financial health of the airline's operational and customer bases, respectively.  

Similarly, higher disposable income among consumers can lead to increased demand for air travel, prompting airlines to 

charge higher fares, as these consumers are willing to pay more for their tickets. These economic indicators have 

conflicting influences on airfares. On the one hand, a higher GDP/income level may signal increased consumer 

spending power and travel demand, potentially leading to higher fares.  On the other hand, economic stabilizers such 

as higher wages and interest rates could also reduce supply on this route due to cost considerations. However, stabilizer 

effects take longer to kick into an economy. Additionally, on the supply side, greater competition tends to drive prices 

down. However, these effects are ambiguous due to interactions among companies in an oligopoly.  

Table 3 describes the results of OLS regressions for the route DEN – LAX. In particular, Table 3a uses models 1 – 7. 

Across models 1-7, we observe that passenger volume is positively correlated with fare. As observed from models 3, 4, 

and 5, the explanatory power improves relative to models 1 and 2, and the effect of passengers on fare becomes 

statistically significant at the 1% level. However, this relationship is inelastic. This correlation is confirmed as we added 

more variables to models 8-14, shown in Table 3b, where passengers and jet fuel are the most significant determinants 

of ticket prices, consistently across all 14 models for both routes (DEN–LAX–DEN). We show the results for models 1 

– 7 for the route LAX – DEN (return route) in Table 4a. We also show models 8 – 14 for the route LAX – DEN (return 

route) in Table 4b. Going back to models 8 – 14 for DEN-LAX, the relationship between JFUEL and fare is also 

positive, indicating that while airlines want to pass on the higher fuel costs to the passengers, they are hindered 

somewhat by the market dynamics and competition. Therefore, this relationship suggests some absorption effects of 

changes in Jet Fuel prices by airline companies themselves (coefficient < 1), possibly indicating evidence of the 

presence of strong competition on the route as well as the nature of the industry in general.  

Table 3a. Regression Results with heteroskedasticity robust White‘s standard errors obtained by using independent 

variables for Denver to Los Angeles (DEN – LAX) Route (Models 1 – 7) 

 
Dependent variable: 

 
lFARE 

 
(1) (2) (3) (4) (5) (6) (7) 

lPAX -0.002 -0.004 0.057*** 0.052*** 0.058*** 0.018 0.034** 

 
(0.018) (0.017) (0.014) (0.014) (0.014) (0.016) (0.017) 

lCAGDP 
  

-1.764*** 
 

-2.138*** 
  

   
(0.105) 

 
(0.586) 

  

lCOGDP 
   

-1.765*** 0.389 
  

    
(0.109) (0.600) 

  

lINC 
     

1.308*** 
 

      
(0.126) 

 

lJFUEL 
 

0.240*** 0.263*** 0.236*** 0.268*** 0.230*** 0.334*** 

  
(0.051) (0.040) (0.040) (0.041) (0.045) (0.048) 

lACCD 
      

-1.601*** 

       
(0.181) 

Constant 5.098*** 4.896*** 30.896*** 27.339*** 31.458*** -7.875*** 19.663*** 

 
(0.092) (0.100) (1.547) (1.387) (1.774) (1.238) (1.674) 

Observations 449 449 449 449 449 449 449 

R2 0.00003 0.048 0.418 0.402 0.419 0.233 0.190 

Adjusted R2 -0.002 0.044 0.415 0.398 0.414 0.227 0.185 
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Residual Std. Error 
(df) 

0.437  
(447) 

0.426 
(446) 

0.334 
(445) 

0.339 
(445) 

0.334 
(444) 

0.383 
(445) 

0.394  
(445) 

F Statistic 
0.013 

(1; 447) 
11.29*** 
(2; 446) 

106.73*** 
(3; 445) 

99.55*** 
(3; 445) 

80.05***  
(4; 444) 

44.96*** 
(3; 445) 

34.831*** 
(3; 445) 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

Table 3b. Regression Results with heteroskedasticity robust White‘s standard errors obtained by using independent 

variables for the Denver to Los Angeles (DEN – LAX) Route (Models 8 – 14) 

 
Dependent variable: 

 
lFARE 

 
(1 8) (2 9) (310) (4 11) (5 12) (6 13) (7 14) 

lPAX 0.056*** 0.063*** 0.061*** 0.060*** 0.060*** 0.075*** 0.074*** 

 
(0.015) (0.015) (0.013) (0.013) (0.013) (0.014) (0.014) 

lJFUEL 0.207*** 0.247*** 0.135*** 0.111*** 0.111*** 0.087 0.063 

 
(0.042) (0.043) (0.039) (0.038) (0.038) (0.054) (0.056) 

lF_legacy 
  

0.947*** 
 

0.238 
  

   
(0.079) 

 
(0.164) 

  

lF_lcc 
   

0.838*** 0.665*** 
  

    
(0.064) (0.135) 

  

lACCD 
 

-0.601*** -0.428*** 0.038 -0.051 1.004*** 1.041*** 

  
(0.185) (0.162) (0.165) (0.176) (0.286) (0.287) 

UA 
     

-2.204** -1.503 

      
(1.023) (1.111) 

F9 
     

-1.245 -0.919 

      
(0.834) (0.870) 

AA 
     

-1.526 -1.030 

      
(1.020) (1.070) 

DL 
     

-3.358*** -3.200*** 

      
(0.776) (0.792) 

AS 
     

3.736 2.800 

      
(2.882) (2.966) 

NK 
     

-2.363** -2.183** 

      
(0.954) (0.962) 

US 
     

2.850 3.295* 

      
(1.774) (1.804) 

WN 
     

-2.403*** -1.944** 

      
(0.826) (0.878) 

lHHI 1.578*** 1.377*** 0.434*** 0.151 0.167 1.152*** 1.057*** 

 
(0.111) (0.126) (0.135) (0.142) (0.142) (0.256) (0.262) 

Q1 
      

-0.009 

       
(0.044) 

Q2 
      

0.013 

       
(0.043) 

Q3 
      

0.074* 

       
(0.044) 

Q4 
       

Constant 6.640*** 11.957*** 4.206*** 0.326 0.780 -1.350 -2.295 
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(0.148) (1.646) (1.575) (1.658) (1.685) (2.674) (2.735) 

Observations 449 449 449 449 449 449 449 

R2 0.347 0.362 0.517 0.540 0.542 0.500 0.505 

Adjusted R2 0.343 0.357 0.512 0.535 0.536 0.487 0.488 

Residual Std. Error 
(df) 

0.354 
(445) 

0.350 
(444) 

0.305 
(443) 

0.298 
(443) 

0.297 
(442) 

0.313 
(436) 

0.312 
(433) 

F Statistic 
78.872*** 
(3; 445) 

63.050*** 
(4; 444) 

94.851*** 
(5; 443) 

103.983*** 
(5; 443) 

87.223*** 
(6; 442) 

36.386*** 
(12; 436) 

29.412*** 
(15; 433) 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

Table 4a. Regression Results with heteroskedasticity robust White‘s standard errors obtained by using independent 

variables for Los Angeles to Denver (LAX - DEN) Route (Models 1 – 7) 

 
Dependent variable: 

 
lFARE 

 
(1) (2) (3) (4) (5) (6) (7) 

lPAX 0.058*** 0.058*** 0.113*** 0.108*** 0.113*** 0.079*** 0.111*** 

 
(0.021) (0.020) (0.018) (0.018) (0.018) (0.019) (0.020) 

lCAGDP 
  

-1.818*** 
 

-2.276*** 
  

   
(0.130) 

 
(0.733) 

  
lCOGDP 

   
-1.815*** 0.476 

  

    
(0.135) (0.749) 

  
lINC 

     
1.335*** 

 

      
(0.152) 

 
lJFUEL 

 
0.220*** 0.258*** 0.230*** 0.265*** 0.212*** 0.328*** 

  
(0.058) (0.049) (0.050) (0.050) (0.054) (0.055) 

lACCD 
      

-2.000*** 

       
(0.213) 

Constant 4.730*** 4.539*** 31.358*** 27.637*** 32.055*** -8.498*** 22.967*** 

 
(0.107) (0.117) (1.923) (1.715) (2.216) (1.486) (1.970) 

Observations 466 466 466 466 466 466 466 

R2 0.017 0.046 0.329 0.316 0.330 0.183 0.198 

Adjusted R2 0.015 0.042 0.325 0.311 0.324 0.178 0.193 

Residual Std. Error 
(df) 

0.508 
(464) 

0.501 
(463) 

0.420 
(462) 

0.425 
(462) 

0.421 
(461) 

0.464 
(462) 

0.460 
(462) 

F Statistic 
(df) 

7.910*** 
(1; 464) 

11.164***  
(2; 463) 

75.545***  
(3; 462) 

71.035***  
(3; 462) 

56.686***  
(4; 461) 

34.482***  
(3; 462) 

38.100***  
(3; 462) 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

Table 4b. Regression Results with heteroskedasticity robust White‘s standard errors obtained by using independent 

variables for Los Angeles to Denver (LAX - DEN) Route (Models 8 – 14) 

 
 

Dependent variable: 

  
 

lFARE 

 
(8) (9) (10) (11) (12) (13) (14) 

 
lPAX 0.108*** 0.124*** 0.130*** 0.126*** 0.128*** 0.130*** 0.129*** 

 
(0.018) (0.018) (0.017) (0.017) (0.017) (0.017) (0.017) 

        lJFUEL 0.188*** 0.243*** 0.103** 0.072 0.063 0.051 0.029 

 
(0.050) (0.051) (0.052) (0.052) (0.052) (0.067) (0.069) 
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lF_legacy 
  

1.049*** 
 

0.443** 
  

   
(0.140) 

 
(0.210) 

  
        lF_lcc 

   
1.085*** 0.768*** 

  

    
(0.132) (0.200) 

  
        lACCD 

 
-0.920*** -1.522*** -0.979*** -1.215*** 0.820** 0.874** 

  
(0.226) (0.229) (0.212) (0.239) (0.367) (0.373) 

        UA 
     

-3.555*** -3.037** 

      
(1.285) (1.368) 

        F9 
     

-0.966 -0.647 

      
(1.053) (1.095) 

        AA 
     

-2.453* -2.032 

      
(1.286) (1.336) 

        DL 
     

-2.619*** -2.403** 

      
(0.989) (1.008) 

        AS 
     

1.385 0.388 

      
(3.659) (3.777) 

        NK 
     

-3.312*** -3.234*** 

      
(1.212) (1.218) 

        US 
     

1.070 1.403 

      
(2.242) (2.278) 

        WN 
     

-2.523** -2.136* 

      
(1.038) (1.091) 

        lHHI 1.721*** 1.415*** 0.592*** 0.019 0.081 1.844*** 1.810*** 

 
(0.131) (0.149) (0.179) (0.220) (0.221) (0.324) (0.329) 

        Q1 
      

-0.010 

       
(0.055) 

        Q2 
      

0.035 

       
(0.055) 

        Q3 
      

0.058 

       
(0.055) 

        Q4 
       

                Constant 6.510*** 14.632*** 14.013*** 8.386*** 9.953*** 1.515 0.574 

 
(0.181) (2.008) (1.899) (2.025) (2.151) (3.461) (3.592) 

         
Observations 466 466 466 466 466 466 466 

R2 0.305 0.329 0.402 0.415 0.420 0.405 0.408 

Adjusted R2 0.300 0.323 0.395 0.408 0.413 0.390 0.388 

Residual Std. Error 
(df) 

0.428  
(462) 

0.421 
(461) 

0.398 
(460) 

0.394 
(460) 

0.392 
(459) 

0.400 
(453) 

0.400 
(450) 

F Statistic 
(df num; den) 

67.528*** 
(3; 462) 

56.468*** 
(4; 461) 

61.755*** 
(5; 460) 

65.161*** 
(5; 460) 

55.445*** 
(6; 459) 

25.744*** 
(12; 453) 

20.646*** 
(15; 450) 

 
Note: *p<0.1; **p<0.05; ***p<0.01 

In models 3, 4, and 5 in tables 3a and 4a, for both routes we observe that a 1% increase in California GDP results in a 

decrease of almost 2% in fares on this route. The effect of Colorado's GDP is more ambiguous but similar, possibly due 

to the high correlation of the two variables with each other as seen in Table 2. In Model 4, on both routes, a 1% increase 

in Colorado GDP results in a nearly 2% decrease in fares. Income, on the other hand, is positively correlated with fare, 

with a 1% increase in income leading to a 1.3% increase in fares on both routes (model 6) due to strong demand-side 

effects.  
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We used employment in accommodation as an index to measure the level of economic activity in the tourism and 

hospitality industry. The accommodation index (ACCD) is negatively correlated with fares (models 7, 9, and 10), but 

the effects are ambiguous in models 11 and 12. As we add more explanatory power through models 13 and 14, the 

accommodation index has a positive, significant (at 1%) but mildly inelastic relationship with the fare. These results are 

robust across both routes. Comparing models 3, 4, 5, and 7, we observe that, due to the correlation between ACCD and 

COGDP and CAGDP (Table 2), the ACCD variable behaves similarly to COGDP and CAGDP in terms of its effect on 

the percentage change in fare (i.e., the coefficients are strongly and negatively associated with prices). 

Jet fuel has a strong effect on prices, both directly and indirectly, through demand and supply-side effects. On the 

demand side, it reduces disposable income, thereby reducing the propensity to fly, assuming a high correlation with 

gasoline prices, as seen in Wood and Gokhale (2017). On the supply side, there is a direct positive correlation, provided 

the supply is not inelastic. In our examination, the jet fuel price generally shows a positive, significant (at least 10% in 

most models) correlation with the fare. In fact, in model 7, a 1% rise in fuel prices generally increases fares by 0.2% to 

0.3%, ceteris paribus, possibly picking up the airline-specific effects, which we discuss in empirical specifications in 

models 10 – 14. 

As we add airline specific fixed effects (i.e. market share of each airline as the regressor) to increase explanatory power, 

the effect of jet fuel on fares becomes weaker. In contrast, the effect of market power (HHI) remains stable, positive, 

and significant, particularly on the LAX-DEN side (Table 4b vs Table 3b). Some of those effects in earlier models (1-12) 

seem to capture airline-specific fixed effects, which, when accounted for in models 13 and 14, provide a clearer picture 

of the correlation between this index and fare, which, although positive, is not statistically significant at 5%. This 

underscores again the importance of firm behavior in an oligopolistic market structure and the influence it exerts on 

each other‘s pricing strategies. 

Most of the airline-specific fixed effects are negative and significant at the 10% level, implying that, after accounting 

for all other variables, airlines tend to keep their fares low, with all majors involved in this activity (models 13 and 14). 

In particular, we notice that Delta appears to be trying to gain market share by flying its passengers at a lower average 

fare, particularly on the DEN-LAX route.7 Spirit, as it is popularly known for low fares, is not far behind, and it is 

aggressive on fares on both sides of the route. The others include Southwest and Frontier. On the other hand, 

firm-specific fixed effects for US Airways on the DEN–LAX route are positive. This result should be analyzed 

carefully because the airline operated in a different environment. However, the effect was passed on to American 

Airlines, whose firm-specific fixed effect is not significantly different from zero. Coming back to US Airways, our 

results indicate that when the airline operated, it flew at fares above average, placing it in the category of legacy carriers 

during its period of operation.8  

Next, when examining market power, the variable of interest is the HHI. The HHI coefficient indicates the effect of 

market power on fares on the route. The coefficient is positive and significant at the 1% level, and it is greater than 1. 

We can interpret this to mean that an increase in market power (an increase in HHI) leads to higher prices charged to 

customers. This is robust across all models (8 - 14), across both routes, and ties in with our previous discussion on why 

jet fuel prices were not impacting prices nearly as much as HHI. 

Another important observation is the price interplay effects of legacy and low-cost carriers (models 10, 11, and 12). 

From Table 2, we observe that both legacy and low-cost carriers have a positive correlation with overall market fares. 

However, the coefficient is not greater than 1, meaning 1% change in the price of either legacy or low-cost carrier leads 

to less than 1% change in overall fare in the market, thereby implying that while these airlines tend to keep their prices 

low, they also have a significant effect on each other‘s prices, cutting across sectors. This is more pronounced on the 

LAX–DEN route, underscoring the effect of multiple alternatives available to passengers at LAX. Although 

cross-sector effects are generally relatively small, some airlines, such as Frontier, Spirit, Delta, and Southwest, have 

tried to lead this route by keeping prices low to maintain their market share. 

Next, we analyze variance inflation factors (VIFs) of the 14 specifications. These are shown in Table 5. These are 

highly similar. Therefore, we will discuss those together. We find that the economic variables jet fuel, accommodation 

index, income, and number of passengers are stable and do not exhibit collinearity. Fares of legacy and low-cost carriers 

are variable. On their own, they do not show collinearity, but together they show collinearity. Hence, it is best to 

                                                        
7 We did a coefficient comparison test in model 13 to find that the difference between the coefficients of Delta and 

American and Frontier as well as Southwest and Frontier and found that Delta and Southwest are indeed trying to gain 

market share by cutting fares 

8 It must be noted that US airways eventually merged with American in 2013 and US airways specific fixed effects 

existed before that time 
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consider only one. Similarly, Colorado and California GDP and income show strong collinearity when used together, 

especially with the accommodation index, as they all reflect economic growth, and the accommodation index is based 

on an industry that is strongly procyclical. 

Table 5. Summary of Variance Inflation Factors for Models 1 - 14 

Model Type VIF Range 
(DEN-LAX) 

VIF Range 
(LAX-DEN) 

Conclusion 

Initial Models (Models 2-11) 1.0 to 3.56 1.0 to 3.56 Excellent stability in both directions. 

Models with lCAGDP and 
lCOGDP (Model 5) 

33.2 to 33.5 33.1 to 33.4 Strong collinearity in both directions. 

Models with Individual Airline 
Dummies (13 & 14) 

1.7 to 80.9 1.63 to 77.4 Very high collinearity in both directions, 
particularly WN and UA. 

Model with quarterly dummies < 2 < 2 Seasonality patterns do not show a 
collinearity pattern 

We use this information to create three more models, 15 to 17. In model 15, we use California GDP rather than 

Colorado GDP, and we use HHI rather than airline market shares. Then, in model 16, we use Colorado GDP, but not 

California GDP. Similarly, we use airline market shares but not HHI. Finally, in model 17, we use Colorado GDP with 

HHI, but drop the substitute fares. This model produces stable VIFs in both directions, with VIFs ranging from 1.11 to 

2.43 (DEN-LAX) and 1.1 to 2.83 (LAX-DEN). Model 17 seems to produce the most optimal results, including key 

economic drivers (lJFUEL, lPAX, lCOGDP, lHHI, quarterly dummies) without redundant terms. Hence, model 17 

seems best specified.  We present the regression results from models 15–17 for both routes in Table 6 below. 

Table 6a presents the results of regressions after accounting for VIFs for the DEN-LAX route. These models confirm 

the previous results. The effects of jet fuel prices and accommodation index labor costs are inelastically passed on to 

customers through fares. Competition affects prices strongly. 

Table 6a. Regression results for Models 15 – 17 from Denver to Los Angeles 

Heteroskedasticity-Robust Regression Results for Models 15 to 17 

 
Dependent variable: 

 
DEN-LAX lFARE 

 
(15) (16) (17) 

lPAX 0.06*** 0.06*** 0.07*** 

 
(0.01) (0.01) (0.01) 

lJFUEL 0.14*** 0.07 0.17*** 

 
(0.04) (0.05) (0.03) 

lACCD 0.06 0.15 0.74** 

 
(0.38) (0.38) (0.33) 

lCAGDP -0.62** 
  

 
(0.31) 

  

lF_legacy 0.73*** 
  

 
(0.15) 

  

lHHI 0.45*** 
 

1.01*** 

 
(0.15) 

 
(0.13) 

lCOGDP 
 

0.18 -1.55*** 

  
(0.42) (0.22) 

lF_lcc 
 

0.77*** 
 

  
(0.14) 

 

UA 
 

0.64 
 

  
(0.51) 

 

F9 
 

0.30 
 

  
(0.49) 

 

AA 
 

0.86 
 

  
(0.79) 
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DL 
 

-0.25 
 

  
(0.73) 

 

AS 
 

2.25 
 

  
(1.54) 

 

NK 
 

0.12 
 

  
(0.81) 

 

US 
 

3.38** 
 

  
(1.42) 

 

WN 
 

0.24 
 

  
(0.50) 

 

Q1 -0.02 0.03 -0.03 

 
(0.04) (0.04) (0.04) 

Q2 -0.01 0.04 -0.02 

 
(0.04) (0.04) (0.04) 

Q3 -0.01 0.04 0.04 

 
(0.04) (0.04) (0.04) 

Constant 10.09*** -3.35 18.84*** 

 
(2.92) (5.11) (1.65) 

Observations 449 449 449 

R2 0.53 0.55 0.48 

Adjusted R2 0.52 0.53 0.47 

Residual Std. Error 0.30 0.30 0.32 

F Statistic 54.09*** 32.86*** 51.20*** 

Note: *p<0.1 **p<0.05 ***p<0.01 

 

Table 6b presents the results of regressions after accounting for VIFs for LAX-DEN route. These models also confirm 

our previous observations. The index of accommodation, which is a proxy for labor costs and jet fuel prices, influences 

average fares. However, there is also a statistically significant effect of the competition measure, as reflected in market 

shares and HHI. 

 

Table 6b. Regression results for Models 15 – 17 from Los Angeles to Denver 

Heteroskedasticity-Robust Regression Results for Models 15 to 17 

 
Dependent variable: 

 
lFARE 

 
(15) (16) (17) 

lPAX 0.13*** 0.13*** 0.12*** 

 
(0.02) (0.02) (0.02) 

lJFUEL 0.11** -0.02 0.18*** 

 
(0.05) (0.07) (0.04) 

lACCD -0.60 -0.40 0.41 

 
(0.45) (0.51) (0.41) 

lCAGDP -0.83*** 
  

 
(0.27) 

  

lF_legacy 0.83*** 
  

 
(0.20) 

  

lHHI 0.52*** 
 

1.15*** 

 
(0.19) 

 
(0.16) 
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lCOGDP 
 

0.09 -1.36*** 

  
(0.61) (0.26) 

lF_lcc 
 

1.05*** 
 

  
(0.20) 

 

UA 
 

0.21 
 

  
(0.63) 

 

F9 
 

1.16* 
 

  
(0.61) 

 

AA 
 

0.37 
 

  
(0.98) 

 

DL 
 

0.10 
 

  
(0.93) 

 

AS 
 

1.63 
 

  
(1.93) 

 

NK 
 

-0.09 
 

  
(1.00) 

 

US 
 

1.27 
 

  
(2.02) 

 

WN 
 

0.37 
 

  
(0.57) 

 

Q1 -0.03 0.05 -0.03 

 
(0.05) (0.06) (0.05) 

Q2 -0.05 0.01 0.01 

 
(0.05) (0.05) (0.05) 

Q3 -0.02 0.001 0.03 

 
(0.05) (0.05) (0.05) 

Constant 18.85*** 1.58 19.32*** 

 
(2.24) (6.51) (2.04) 

Observations 466 466 466 

R2 0.42 0.43 0.39 

Adjusted R2 0.41 0.41 0.38 

Residual Std. Error 0.39 0.39 0.40 

F Statistic 36.46*** 20.96*** 36.26*** 

Note: *p<0.1 **p<0.05 ***p<0.01 

When we compare model 17 for DEN – LAX and the return route, we find that HHI plays a strong role in determining 

fares. Moreover, this effect is significant. Wage pressures (measured by accommodation index) are more statistically 

significant on average from the DEN – LAX side than the other way around. However, fuel costs influence prices on 

both routes. Fares respond vigorously to changes in passenger numbers. COGDP has a negative influence on prices, 

indicating unaccounted-for adverse supply-side effects associated with perceived higher economic activity. Also, some 

of the procyclical influence has been captured by the ACCD index, which could make the effects of COGDP slightly 

confounding, ceteris paribus. However, evidence of intense competition on the route suggests that the pass-through 

from both passengers and fuel on fares, although positive, is inelastic.  

Interpretation of results: 

HHI: Market concentration and desire for market power are consistent determinants of fares. The elasticities of HHI on 

both sides are statistically significant. 

ACCD: Accommodation index is a proxy for supply-side cost pressures and the ability to provide the best possible 

services to passengers. This cost is a statistically significant determinant of ticket fares in the DEN–LAX route, but not 

vice versa. 
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COGDP: Over time, as GDP grew, supply-side competitive forces and fierce competition for market share likely led to 

excess capacity and/or lower fares, or both. We see that in Figures 6 and 7 next. 

Figure 6 and Figure 7 show the correlation of fare and market share for selected airlines for both routes. From Figure 6 

we can see that all three airlines (Delta, Spirit, and Frontier) were forced to cut prices for specific periods to gain a 

larger share of customers on the DEN–LAX route. We show this relationship for Delta in Figure 6a below, for Spirit in 

Figure 6b, and for Frontier in Figure 6c. 

 

Figure 6a. Market share and Fare versus time for Delta Airlines DEN – LAX (Q1, 2002 - Q2, 2023) 

 
Figure 6b. Market share and Fare versus time for Spirit Airlines DEN – LAX (Q2, 2012 - Q2, 2023) 
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Figure 6c. Market share and Fare versus time for Frontier Airlines DEN – LAX (Q1, 2002 - Q3, 2021) 

Figure 7 below shows similar pressures for the route LAX–DEN (return route). Figure 7a shows the inverse correlation 

between Delta Airlines' prices and market share. 

 

Figure 7a. Market share and Fare versus time for Delta Airlines LAX - DEN  (Q1, 2002 - Q2, 2023) 

Figure 7b displays Spirit Airlines' market share and price relationship for the period under study. 
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Figure 7b. Market share and Fare versus time for Spirit Airlines LAX – DEN (Q2, 2012 - Q2, 2023) 

We observe the same inverse correlation between price and market share as described above (for Delta and Spirit) in 

figure 7c below for Frontier, which showcases the intense competition for passenger share via aggressive ticket prices. 

 

Figure 7c. Market share and Fare versus time for Frontier Airlines LAX – DEN (Q1, 2002 - Q3, 2021) 

Even though the broader pattern of price competition to gain market share shows a broadly similar trend across airlines 

in Figures 6 and 7, our regression results reveal slight differences among these airlines. This is evidenced not only by 

the market share variables representing airline-specific fixed effects for Delta (2009 – 2014), Spirit (2015 - 2019), and 

Frontier (2005 – 2012) for the route DEN - LAX. Further, this is also seen from the evidence for Delta (2015 – 2018) 

and Spirit (2015-2019) for the route LAX to DEN. 

Finally, we include quarterly fixed effects to account for seasonality in model 14 for each route (Tables 3b and 4b). In 

general, we did not find significant seasonality effects on fares across both routes; this may be due to airlines' 

aggressive pricing policies to gain market share, particularly on the DEN-LAX route. In model 14, the only significant 

finding is a small positive correlation between Q3 and fare (at 10%), possibly due to residents traveling out of Colorado 

to the West Coast for summer travel.  
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To assess the robustness of our models, particularly Models 13 and 14, which include airline-specific fixed effects, we 

first conduct ablation studies. To do this, we divided our variables into core economic variables which are based on 

theory of demand and supply (number of passengers, jet fuel prices and employees hired within the hospitality industry), 

market structure variables airline market shares and HHI) and seasonality variables (quarterly dummies) and performed 

both the test of joint significance as well as compared the values of R2, the coefficient of determination.  

For the LAX route, the base model used airlines as clusters, yielding an R2 of 50% (62% within and 61% between). 

When the main economic variables were removed and the regression was rerun, R2 dropped to 36% with 41% as within 

groups and 64% between groups. The joint test of significance yielded an F-statistic of 46.9, which was highly 

significant at the 0.01% level, indicating that the variables are jointly highly significant. Similarly, after ablating airline 

market share variables, R2 dropped to 41% within, 65% between, and overall 35.7%. The F-statistic was 5712 and 

indicated strong joint significance at the 0.01% level. Finally, after ablating seasonality, R2 dropped slightly to an 

overall 48.7%, 61.5% within, and 61.6% between. The F-statistic was 7.8, and the joint significance was still at 1%. 

Overall, all variable groups were significant and explained a large amount of variation in the fare dependent variable. 

For the LAX–DEN route, the base model was also created using airlines as clusters, yielding an R2 of 35%, 

decomposed as 64.5% within and 20.9% between. When the main economic variables were removed and the regression 

was rerun, R2 dropped to 30.5% with 59% as within groups and 30.5% between groups. The joint test of significance 

yielded an F-statistic of nearly 32, with the model variables significant at the 0.1% level. Similarly, after ablating airline 

market share variables, R2 dropped to 45.7% within, 29.2% between, and overall 28.6%. The F-statistic was 2923 and 

showed very strong joint significance at the 0.01% level. Lastly, we also ablated seasonality, ceteris paribus, and found 

that R2 dropped to an overall 44.3%, 63.7% within, and rose slightly to 22.1% between. The F-statistic was 9.9 and still 

joint significance at 1%. Overall, all variable groups were significant for the return route as well. 

To test this further and establish the veracity of our models, we examined the AIC and BIC for all our models, as shown 

in Tables 5a and 5b below. Table 5a shows the results for DEN – LAX, while Table 5b shows the same for LAX – DEN. 

In Table 5a, we notice that the best models with the least AIC and BIC are models 10 – 14, which include most of the 

regressors. 

Table 5a. Regression Results with AIC/BIC for DAN – LAX Route 

DEN–LAX: GLM results with AIC/BIC 

  
Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 
Model 

7 
Model 

8 
Model 

9 
Model 

10 
Model 

11 
Model 

12 
Model 

13 
Model 

14 

AIC 552 531 292 311 292 422 447 354 340 209 199 191 227 229 

BIC 564 547 313 332 317 443 467 375 365 239 228 224 285 300 

Log 
Likelihood 

-273 -261 -141 -151 -141 -206 -218 -172 -164 -98 -93 -87 -99 -98 

Deviance 87.8 83.6 50.3 52.4 50.1 66.2 69.7 57.4 55.4 41.9 41.0 40.1 42.2 41.9 

Num. obs. 474 474 474 474 474 474 474 474 474 474 474 474 474 474 

As we saw earlier, Table 5a helps us select models 10 – 14. Similarly, for the LAX-DEN return route, in Table 5b, we 

notice that models 10 – 14 have relatively lower values of AIC and BIC. This ties in with our previous results of the 

joint test of significance results obtained from ablation studies. 

Table 5 b. Regression Results with AIC/BIC for LAX – DEN Route 

LAX–DEN: Results with AIC/BIC 

  
Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 
Model 

7 
Model 

8 
Model 

9 
Model 

10 
Model 

11 
Model 

12 
Model 

13 
Model 

14 

AIC 699 687 528 537 530 617 609 540 526 467 451 447 487 492 

BIC 712 703 549 557 555 638 630 560 551 496 480 480 546 562 

Log Likelihood -347 -339 -259 -263 -259 -303 -299 -265 -257 -227 -218 -216 -230 -228 

Deviance 120 116 83 84 82 100 98 85 82 72 70 69 73 73 

Num. obs. 471 471 471 471 471 471 471 471 471 466 461 461 471 471 

We used the Poisson Pseudo-Maximum Likelihood estimator because this dataset contains a log-linear specification. 

Because it is a panel dataset, heteroskedasticity may be observed in the regressions. We used two methods to correct 

that. We used White‘s correction, and we compared the results using the PPML estimator. We find that there is no 

change in the overall significance of the parameters estimated for the models in Table 3a and 3b (DEN-LAX route). For 

the return route results in tables 4a and 4b, we find that airline-specific fixed effects become slightly more statistically 

significant. 

Finally, we also performed the Fisher-type Phillips-Perron test for panel unit roots to check whether we need to worry 

about spurious regression, whether the variables are non-stationary, and whether further action is needed to correct that. 
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Our results reject the null of a unit root at the 0.1% significance level for both sides of the route, thereby confirming the 

presence of panel cointegration among economic variables, airline market shares, and even seasonality factors. This 

suggests a stable long-term relationship between the chosen empirical specifications. 

8. Conclusion and Policy Implications 

Our investigation of the Denver-Los Angeles air travel has explored several factors shaping airfare pricing, highlighting 

the significance of a diverse array of elements that come to the forefront well beyond passenger counts and seasonal 

trends. While jet fuel prices – an essential component of operating costs – do play a role in fare determination, the HHI 

Index, which captures the level of market competition, has a more significant influence on pricing strategies. We 

observed that Delta made sustained efforts over several years to gain market share, consistently trying to attract 

passengers through its pricing and, likely, through promotional strategies as well. Notably, peer pricing strategies and 

competitor response are particularly prominent. Consistent with economic theory, passenger volume significantly 

influences airfare pricing, as does broader economic activity, such as GDP and consumer income. 

Overall, these empirical findings show that economic conditions continue to influence airfare levels significantly. More 

importantly, it should be underscored that each route has its own characteristics, as this study demonstrates. It is 

pertinent to examine route-specific characteristics rather than draw blanket conclusions about pricing strategies for the 

country or an economic region as a whole. This is our contribution to the research by examining this critical route, 

which amalgamates both low-cost and legacy carriers even during a crisis such as the COVID-19 pandemic. Moreover, 

when examining the impact of airline business models, we observe a landscape in which both legacy and low-cost 

carriers determine fares, challenging the prevailing notion that LCC entry causes a downward effect on the overall price 

structure in a city pair. 

The route we studied between DEN and LAX has distinct characteristics: there is no single dominant airline, and both 

legacy and low-cost carriers serve it. There is no indication that any carrier, regardless of cost structure, commands 

significant market power. However, oligopolistic conditions coexist alongside active price competition and a hunger for 

market share. Price competition is intense, as seen in airline-specific fixed effects. At the same time, a mix of legacy 

and low-cost carriers operating on the route makes some interesting conclusions. There are very few markets that 

exhibit the dynamic blend of business, tourism, and international connectivity as seen at airports such as LAX and DEN. 

LAX serves as a key hub for global flag carriers linking to the US. In contrast, DEN, despite its inland location, serves 

as a strategic connecting point for legacy carriers, bridging East and West Coast traffic. Market concentration, 

competitive strategies, and seasonal fluctuations each play a unique role in price determination. This suggests a need for 

airlines to adopt flexible pricing strategies that adapt to prevailing market conditions, as well as a closer look at each 

route to assess its characteristics, especially if it has a strategic impact on the airline‘s business goals.  

While network planners and analysts might assume that the economic factors influencing travel on a route are identical 

to those affecting its return segment, our study does not find empirical support for this assumption. While most 

explanatory variables yielded similar insights into fare determination, certain factors – such as the level of competition 

and airline-specific fixed effects – proved particularly noteworthy. Additionally, even among the factors that seemed 

comparable across models and airlines, the impact was in opposite directions. Delta, Frontier, and Southwest airlines all 

had highly significant coefficients on the DEN-LAX portion of the trip. However, for the LAX-DEN portion of the trip, 

these coefficients were less negative and not statistically significantly different from 1 in absolute value. So, while we 

can think of these fixed effects as similar across airlines, there is evidence of an intense price war to gain market share, 

and these effects differ on each leg of the journey. This is visible by comparing the coefficients of American, Delta, and 

Southwest airline-specific fixed effects across Tables 3(b) and 4(b). 

Through this study, we add to the literature by focusing on a single route and contributing to a broader understanding of 

pricing mechanisms in the airline sector. Our study also lays the groundwork for strategic and policy-oriented 

advancements within airlines and regulators alike, showing that addressing competitive dynamics and enhancing 

consumer welfare need not follow a blanket approach. Several sector-specific attributes are often overlooked when 

decision makers generalize and implement broad policy measures for airline passengers. Future studies could deepen 

understanding of what drives airline pricing and profitability by incorporating additional revenue metrics into their 

analysis. Assessing the precise impact of aircraft leasing on airline financial performance would provide valuable 

insights into the dynamics of network performance and revenue management.  
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Appendix A. Regression Results with Report on AIC and BIC 

DEN–LAX: GLM results with AIC/BIC 

  
Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 
Model 

7 
Model 

8 
Model 

9 
Model 

10 
Model 

11 
Model 

12 
Model 

13 
Model 

14 

(Intercept) 5.07*** 4.82*** 6.54*** 6.50*** 6.52*** 3.33*** 6.37*** 3.24*** 4.15*** 3.70*** 3.61*** 3.60*** 4.88*** 4.49*** 

  (0.03) (0.06) (0.11) (0.11) (0.11) (0.14) (0.17) (0.12) (0.25) (0.22) (0.22) (0.22) (0.67) (0.71) 

PAX 0.00 0.00 0.00*** 0.00*** 0.00*** 0.00* 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 0.00*** 

  (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

JFUEL   0.10*** 0.08*** 0.08*** 0.09*** 0.09*** 0.12*** 0.09*** 0.10*** 0.06*** 0.08*** 0.07*** 0.05* 0.04 

    (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.02) (0.02) 

CAGDP     -0.00***   -0.00***                   

      (0.00)   (0.00)                   

COGDP       -0.00*** 0.00                   

        (0.00) (0.00)                   

INC           0.00***                 

            (0.00)                 

ACCD             -0.00***   -0.00*** -0.00* 0.00 0.00 0.00*** 0.00*** 

              (0.00)   (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

HHI               5.41*** 4.58*** 1.34** 0.29 0.38 3.91*** 3.62*** 

                (0.37) (0.42) (0.45) (0.49) (0.49) (0.87) (0.89) 

F_legacy                   0.01***   0.00**     

                    (0.00)   (0.00)     

F_lcc                     0.01*** 0.00***     

                      (0.00) (0.00)     

UA                         -2.38* -1.74 

                          (0.96) (1.05) 

F9                         -1.43 -1.11 

                          (0.73) (0.77) 

AA                         -1.42 -0.98 

                          (0.90) (0.95) 

DL                         -3.53*** -3.36*** 

                          (0.67) (0.69) 

AS                         2.99 2.20 

                          (2.63) (2.71) 

NK                         -2.76** -2.55** 

                          (0.85) (0.86) 

US                         2.74 3.19 

                          (1.66) (1.69) 

WN                         -2.46*** -2.04* 

                          (0.73) (0.79) 

Q1                           0.00 

                            (0.04) 

Q2                           0.02 

                            (0.04) 

Q3                           0.07 

                            (0.04) 

AIC 551.92 530.59 292.24 311.20 292.11 421.90 446.45 354.08 339.50 209.43 198.91 190.71 226.68 229.30 

BIC 564.41 547.23 313.05 332.00 317.08 442.70 467.25 374.89 364.47 238.56 228.04 224.00 284.94 300.04 

Log 
Likelihood 

-272.96 -261.29 -141.12 -150.60 -140.06 -205.95 -218.22 -172.04 -163.75 -97.71 -92.45 -87.36 -99.34 -97.65 

Deviance 87.80 83.58 50.34 52.39 50.11 66.18 69.69 57.35 55.38 41.91 40.99 40.12 42.20 41.90 

Num. obs. 474 474 474 474 474 474 474 474 474 474 474 474 474 474 
***p < 0.001; **p < 0.01; *p < 0.05 
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LAX–DEN: Results with AIC/BIC 

  
Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 
Model 

7 
Model 

8 
Model 

9 
Model 

10 
Model 

11 
Model 

12 
Model 

13 
Model 

14 

(Intercept) 4.73*** 4.53*** 30.89*** 27.29*** 31.45*** -8.39*** 22.71*** 6.51*** 14.43*** 13.36*** 7.33*** 9.10*** 1.06 0.13 

  (0.11) (0.12) (1.92) (1.71) (2.21) (1.48) (1.96) (0.18) (1.99) (1.93) (2.09) (2.21) (3.45) (3.58) 

lPAX 0.06** 0.06** 0.11*** 0.11*** 0.11*** 0.08*** 0.11*** 0.11*** 0.12*** 0.13*** 0.12*** 0.13*** 0.13*** 0.13*** 

  (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

lJFUEL   0.22*** 0.26*** 0.23*** 0.27*** 0.21*** 0.33*** 0.19*** 0.25*** 0.10* 0.08 0.07 0.05 0.03 

    (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.07) (0.07) 

lCAGDP     -1.79***   -2.16**                   

      (0.13)   (0.73)                   

lCOGDP       -1.79*** 0.39                   

        (0.13) (0.75)                   

lINC           1.32***                 

            (0.15)                 

lACCD             -1.97***   -0.90*** -1.44*** -0.81*** -1.09*** 0.80* 0.85* 

              (0.21)   (0.22) (0.23) (0.22) (0.25) (0.37) (0.37) 

lHHI               1.72*** 1.42*** 0.64*** 0.18 0.22 1.87*** 1.84*** 

                (0.13) (0.15) (0.18) (0.22) (0.22) (0.32) (0.33) 

lF_legacy                   1.04***   0.47*     

                    (0.14)   (0.21)     

lF_lcc                     1.03*** 0.70***     

                      (0.13) (0.19)     

UA                         -2.89* -2.38 

                          (1.24) (1.32) 

F9                         -0.28 0.03 

                          (1.00) (1.04) 

AA                         -1.70 -1.28 

                          (1.23) (1.28) 

DL                         -1.94* -1.73 

                          (0.93) (0.95) 

AS                         2.14 1.11 

                          (3.63) (3.76) 

NK                         -2.63* -2.56* 

                          (1.16) (1.17) 

US                         1.68 1.99 

                          (2.21) (2.25) 

WN                         -1.84 -1.46 

                          (0.98) (1.04) 

Q1                           -0.01 

                            (0.06) 

Q2                           0.03 

                            (0.05) 

Q3                           0.06 

                            (0.05) 

AIC 699.28 686.54 528.18 536.61 529.91 617.03 608.75 539.60 525.75 467.09 450.63 447.27 487.34 491.61 

BIC 711.75 703.16 548.96 557.38 554.84 637.80 629.53 560.38 550.68 496.10 479.57 480.34 545.51 562.24 

Log 
Likelihood 

-346.64 -339.27 -259.09 -263.30 -258.96 -303.51 -299.38 -264.80 -256.87 -226.54 -218.32 -215.63 -229.67 -228.81 

Deviance 120.17 116.47 82.86 84.36 82.81 100.06 98.32 84.89 82.08 72.14 69.59 68.79 73.13 72.86 

Num. obs. 471 471 471 471 471 471 471 471 471 466 461 461 471 471 

***p < 0.001; **p < 0.01; *p < 0.05 
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Table 5a. Variance Inflation Factor for variables in models 2-14 for the DEN – LAX route 

Var Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 

lACCD           1.13   1.49 1.5 1.63 1.85 4.46 4.5 

lCAGDP   1.07   33.5                   

lCOGDP     1.06 33.2                   

lINC         1.02                 

lJFUEL 1 1 1 1.05 1 1.05 1 1.09 1.16 1.18 1.18 2.08 2.25 

lPAX 1 1.07 1.06 1.07 1.02 1.07 1.08 1.1 1.1 1.1 1.1 1.15 1.16 

AA                       10.4 11.5 

AS                       1.7 1.81 

DL                       10.3 10.8 

F9                       29.2 31.8 

NK                       7.5 7.64 

Q1                         1.67 

Q2                         1.64 

Q3                         1.7 

UA                       43.9 51.8 

US                       2.03 2.1 

WN                       71.4 80.9 

lF_lcc                   2.7 12.1     

lF_legacy                 1.93   8.59     

lHHI             1.09 1.44 2.18 2.54 2.55 7.46 7.81 

Table 5b. Variance Inflation Factor for variables in models 2-14 for the LAX – DEN route 

Variable 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 
Model 

7 
Model 

8 
Model 

9 
Model 

10 
Model 

11 
Model 

12 
Model 

13 
Model 

14 

lACCD           1.14   1.53 1.74 1.53 1.96 4.46 4.58 

lCAGDP   1.06   33.4                   

lCOGDP     1.05 33.1                   

lINC         1.02                 

lJFUEL 1 1 1 1.05 1 1.05 1 1.08 1.24 1.28 1.29 2.03 2.18 

lPAX 1 1.05 1.05 1.06 1.02 1.09 1.05 1.1 1.1 1.1 1.1 1.13 1.13 

AA                       10.4 11.1 

AS                       1.7 1.8 

DL                       10.4 10.8 

F9                       29.4 31.7 

NK                       7.56 7.61 

Q1                         1.63 

Q2                         1.67 

Q3                         1.63 

UA                       42.4 47.9 

US                       2.01 2.06 

WN                       70.3 77.4 

lF_lcc                   3.31 7.65     

lF_legacy                 1.91   4.42     

lHHI             1.05 1.41 2.27 3.5 3.56 7.36 7.56 

 


