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Abstract  

Quantifying the proportion of normal- and high-emitting vehicles and their emissions is vital for creating an air quality 
improvement strategy for emission reduction policies. This paper includes the California LEV III and United States 
Environmental Protection Agency Tier 3 vehicle regulations in this projection of high emitter quantification for 2018 
and 2030. Results show high emitting vehicles account for up to 6% of vehicle population and vehicle miles traveled. 
Yet, they will contribute to over 75% of exhaust and 66% of evaporative emissions. As these high emitting vehicles are 
gradually retired from service and are removed from the roads, the overall effect on air quality from vehicle emissions 
will be reduced.  
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1. Introduction  

Air quality in the United States (U.S.) has improved since 1980. The U.S. Environmental Protection Agency (EPA) 
estimates nationwide ambient air pollutant emissions based on actual monitored readings or engineering calculations. 
Estimates are based on the amounts and types of pollutants emitted by vehicles, factories and other sources.  Meanwhile, 
EPA estimates there are 75 million people which lived in counties nationwide with pollution levels exceeding the primary 
National Ambient Air Quality Standards (NAAQS) during 2013 (U.S. EPA, 2014a).  

Air quality in the U.S. is expected to improve due to EPA’s national programs to reduce air emissions. Thus, there are 
many regulations on-the-way (OTW) and on-the-books (OTB), including regulations on mobile sources, such as the 
California Low Emission Vehicle third generation (LEV III) and the federal Tier 3 standards. A recent study of Collet et. 
al (2014a) explored the effects of those regulations by using the U.S. EPA Community Multiscale Air Quality (CMAQ) 
model to predict maximum daily 8-hr average ozone concentrations in the western and eastern United States during the 
years 2018 and 2030 in a month with typical high ozone concentrations, July. The results of their experimentation 
projected most areas to have decreases in 8-hr ozone concentrations in the year 2030, although there are some areas with 
increased concentrations. Additionally, there are areas with 8-hr ozone concentrations greater than the current U.S. 
NAAQS level, which is 75 ppb. These results are consistent with EPA’s results (U.S. EPA, 2014b). 

A study by the Coordinating Research Council, Inc. (CRC, 2013), simulated light duty gasoline vehicle (LDGV) 
emissions scenarios with EPA’s original light duty vehicle standards. If no controls beyond Tier 0 were implemented 
through 2022, LDGV emissions would account for 46% of nitrous oxide (NOx) and 33% of volatile organic compounds 
(VOC). However, the additional controls through EPA’s second set of light duty vehicle standards, Tier 2, result in 
LDGV becoming one of the smallest U.S. source sectors for emissions, contributing to 10% of NOx and 8% of VOC.  

California and federal regulations have required the automotive industry to provide consumers with low emission 
vehicles. Meeting those requirements has required continuous development of emission technologies and necessary 
improvements to automotive fuels. Explaining advances in vehicle emission control technology aids in understanding 
why older vehicles have higher emissions than newer vehicles. An article by Ehlmann and Wolff (2005) chronicled the 
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most significant improvements applicable to light duty gasoline vehicle emission controls and regulations. The source 
and chemical composition of automobile emissions were identified as: tailpipe exhaust and emissions contain 
hydrocarbons (HC), carbon monoxide (CO) and NOx; and crankcase and evaporative emissions contain HC only. In the 
1960s the positive crankcase ventilation system was implemented as the first control device. In the 1970s the carbon 
canister, exhaust gas recirculation systems and catalytic converters were implemented. Next, three-way catalytic 
converters were developed to control HC, CO and NOx pollutants simultaneously. The three-way catalysis required a 
high degree of air-fuel ratio control, which created the need for oxygen sensors and replacing carburetors with 
fuel-injection systems. To ensure acceptable in-use performance, on-board diagnostic (OBD) systems were 
implemented during the 1980s and some States also initiated inspection/maintenance (I/M) programs which required 
owners to have their vehicle’s emissions tested and, if the vehicle failed the test, to get it repaired. However, I/M 
programs have considerable questions about accuracy of the testing and the effectiveness of the repairs. The 1990s 
introduced requirements to ensure low emissions under the most severe operating conditions.  

The tighter tailpipe standards included intermediate mileage (50,000 mile) standards and for the first time, high mileage 
(100,000 mile) standards and OBD II. For these requirements, catalysts were improved to be able to warm-up faster to 
reduce cold start emissions. Additionally, cleaner low-sulfur gasoline was required to enable advanced technology on 
new vehicles and provide immediate on-road fleet emission reductions. In the late 1990s, hybrid vehicles were 
introduced. Some of the advanced technologies used by hybrids include: electric motor drive/assist, regenerative braking 
and automatic start/shutoff (www.fueleconomy.gov, 2014). In 2013 and 2014, LEV III and Tier 3 standards, 
respectively, were introduced to reduce emissions to near-zero levels for passenger cars and light-duty trucks and 
reduce sulfur in gasoline.  

The diesel-powered vehicles in the 1970s had a reputation for being high tailpipe emitters. Since then, significant 
regulations and improvements have been made. Diesel–powered vehicles must now meet the same stringent standards 
as gasoline vehicles. These standards for PM and NOx in diesel exhaust have helped stimulate major technological 
advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been 
termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as diesel exhaust from post-2006 model year 
vehicles and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic 
controls, ultra-low-sulfur diesel fuel, oxidation catalysts, exhaust gas recirculation, wall-flow diesel particulate filters 
(DPFs), lean NOx traps, and selective catalytic reduction (SCR) with urea control (Hesterberg et al., 2011).  

The impact of regulations on future mobile source emissions can be predicted using emissions modeling. Therefore, it is 
important to understand the components of the mobile source model. Mobile sources include all non-stationary sources 
of air pollution such as cars, trucks, motorcycles, buses, airplanes and locomotives. In general, emissions are calculated 
as the product of the number of sources population/volume), activity and emission factor (CARB, 2014). The equation 
is: 

                                  E = Pop * A * EF                                             (1) 

where, E = pollutant specific emissions [mass emitted per unit time], Pop = population of on-road mobile sources  

A = activity (travel data) [e.g. miles traveled per day, or hours operational], EF = source specific emission factor [mass 

per unit activity]. 

Most on-road mobile source inventories for tailpipe and evaporative emissions are estimated by two mathematical 

modeling tools: the Motor Vehicle Emission Simulator (MOVES) in the U.S. (excluding California) and EMFAC 

(Emission Factors) model in California. The models contain various modules that account for different portions of the 

onroad emissions inventory calculation process, specifically population, activity and emission factors, as shown in 

Figure 1.  

 

 

 

 

 

 

 

Figure 1. Diagram of the various modules in an emissions model which account for the on-road emission inventory. 

Emissions  
Inventory

Activity

Emission 
Factors

Population

VehicleMiles 
Traveled

Ambient 
Temps

Vehicle 
Starts



Studies in Engineering and Technology                                                            Vol. 2, No. 1; 2015 

49 

Regarding the population of on-road mobile sources, the models include all fuel type cars, trucks, buses, and 
motorcycles. In general, population data are obtained from vehicle registration data. These data are compiled and 
classified according to fuel, class, technology group, age and geographic area. Further calculations require data on 
population growth rates by calendar year, vehicle class, fuel type and geographic area. These estimates are coupled with 
activity data and emission factors, as indicated previously, to estimate total emissions. On-road activity refers most 
commonly to vehicle miles traveled (VMT), speed, and number of trips for each vehicle type and model year. Since 
motor vehicle emissions are dependent on temperature and humidity profiles, historical meteorological data are utilized. 
Emission factors used are based on emission tests with dynamometers coupled with certification data to yield base 
emission rates (BERs) and are adjusted for in-use conditions. There are differences in BERs between EMFAC and 
MOVES: EMFAC has BERs based on a driving cycle reflecting in-use driving patterns for an average trip and are 
adjusted by speed correction factors; MOVES has modal emission rates based on speed and vehicle specific power 
(VSP), which the model uses to calculate a cycle-average emission factor corresponding to the road type and average 
speed. Emission factors are provided for different temperatures, operating speeds, emission modes, vehicle types, model 
years, technology types, fuel, and relative humidity. The road type and ramps, fuel formulation, inspection and 
maintenance programs, and refueling programs are included in the calculation. Evaporative emissions consist of: hot 
soak loss (HSL) emissions, which are the gasoline vapors generated immediately following shutdown of an engine; 
diurnal breathing or resting losses (DBL), which are evaporative emissions generated by daily ambient temperature 
changes while the engine is off; and running losses (R/L), which are evaporative vapors emitted when the vehicle is in 
operation (U.S. EPA, 2001). Diesel engines are assumed to have no significant evaporative emissions due to the very 
low volatility of diesel fuel compared to gasoline (U.S. EPA, 2004). Both EMFAC and MOVES account for particulate 
matter (PM) associated with tire and brake wear. Therefore, all in-use aspects of on-road vehicle emissions are 
accounted for in the modeling. 

On-road vehicle emissions are estimated by State and local air quality and transportation agencies for a variety of 
different regulatory purposes. Inventories are required as the basis for showing further progress, attainment 
demonstration, and maintenance in their State Implementation Plans (SIPs). On-road emissions are calculated as part of 
the regional conformity analysis for transportation plan and transportation improvement program (TIP) conformity 
determinations, and the regional emissions analysis associated with projects in isolated rural areas.  

Consequently, it is important to know if a small fraction of motor vehicles on the roadway emits a disproportionate 
fraction of pollutant emissions, especially since it is possible for the difference in emissions between normal- and 
high-emitting vehicles to differ by one or more orders of magnitude (Wolf et al., 1998). Quantifying the proportion of 
normal- and high-emitting vehicles is vital for creating a strategy for air quality improvement via improved emission 
reduction policies that target subsets of the vehicle fleet. Research literature provides wide ranges of estimated 
contributions from these high emitters, but the general conclusion is that a small fraction of the fleet is responsible for a 
significant fraction of fleet emissions. The objective of this study was to determine, with the promulgation of California 
Air Resources Board’s LEV III and U.S. EPA’s Tier 3, the projected percentage of high emitters and their contribution 
to emissions of pollutants affecting air quality. 

2. Methodology 

This study investigated the impact of high-emitter vehicles on the on-road emissions inventory in 2018 and 2030. For 
this effort, a literature search was performed to compile emission rates by age (by vehicle, model and year) for 
normal-emitters, high-emitters, and repaired high-emitters, as well as fractions of vehicle population by model year 
considered to be high-emitter and repaired high-emitter (U.S. EPA, 1999; SEMCOG, 2008; Brooks, 1995; Hawkins, 
2013). The scope of this effort was defined to include exhaust and evaporative HC, NOx and PM. Tier 3 vehicles were 
projected to have the same trends as found in the literature for Tier 1 and Tier 2 vehicles. The vehicle types in the 
analysis were limited to the light duty vehicle categories as follows:  

1. LDGV (light duty gasoline vehicles; passenger cars);  

2. LDGT1 (light duty gasoline truck classes 1 and 2);  

3. LDGT2 (light duty gasoline truck classes 3 and 4);  

4. LDDV (light duty diesel vehicles);  

5. LDDT (light duty diesel truck classes 1-4). 

Heavy duty diesel and gasoline vehicles (HDDV and HDGV) were not included in the high emitter analysis. 

It was estimated, for 2018 and 2030 calendar year, new vehicles emit within normal levels until they are one year old at 
which time the percent of high emitters in the fleet is relatively low (0.5 or 0.6% of the age group population). The 
percent of high emitters then increases with vehicle age, accumulating linearly with age until 20-years old. Figure 2 
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