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Abstract 

In this paper, a mathematical model was established to predict the deoxidation alloying and to optimize the type and 

quantity of input alloys. Firstly, the GCA method was used to obtain the main factors affecting the alloy yield of carbon 

and manganese based on the historical data. Secondly, the alloy yield was predicted by the stepwise MRA, the BP 

neural network and the regression SVM models, respectively. The conclusion is that the regression SVM model has the 

highest prediction accuracy and the maximum deviation between the test set prediction result and the real value was 

only 0.0682 and 0.0554. Thirdly, in order to reduce the manufacturer's production cost, the genetic algorithm was used 

to calculate the production cost mathematical programming model. Finally, sensitivity analysis was performed on the 

prediction model and the cost optimization model. The unit price of 20% of the alloy raw materials was increased by 

20%, and the total cost change rate was 0.7155%, the lowest was -0.4297%, which proved that the mathematical model 

established presented strong robustness and could be certain reference value for the current production of iron and steel 

enterprises. 

Keywords: alloy yield, gray correlation analysis method, back propagation neural network model, regression support 

vector machine model, genetic algorithm 

1. Introduction 

Deoxidation alloying is an important process in steel smelting. At the end of smelting, different steel types need to add 

different amounts and different kinds of alloys to make their alloying elements reach the standard and finally make the 

finished steel meet the specific requirements in some physical properties. With the increasing production of high 

value-added steel in the steel industry, how to establish a mathematical model for deoxidation alloying based on 

historical data, to predict and to optimize the type and quantity of alloy inputs, which is an important problem to solve 

for the major iron and steel enterprises.  

The traditional alloying material addition method has the experience calculation method, the simple theory calculation 

method, the iteration search method and so on (Li et al., 1995; Liu et al., 2004). If according to the fixed yield rate or 

empirical value of different elements to calculate the addition of various alloys instead of forming an automatic batching 

model based on the prediction of recovery rate and cost optimization algorithm, it will be difficult to realize the automatic 

optimization and cost control of the current secondary alloy batching. At present, there are some optimization models 

about the alloy batching. For example, the linear programming model considering the effect of added alloy material 

weight on raw steel weight and alloy yield (Huang and Du, 2003). The yield estimation model based on gray model and 

the linear programming model constitute the alloy composition control model (Yuan et al.,2006). The principal 

component analysis model of the main factors affecting the historical revenue rate was obtained and the multi-objective 

optimization model with the highest historical revenue rate of each element was adopted (Zheng, 2019). However, the 

above model still has some shortcomings. For example, the linear programming model is not applicable to the case where 

the content of elements in molten steel is not specific. Again, it takes a lot of data to get through the historical rate. 

A research based on the smelting data and commonly used alloy composition data provided by the 9th MathorCup 

university mathematical modeling challenge in 2019 was conducted. Modern steelmaking technology is mainly 

converter steelmaking. According to the requirements of steel type, after adding materials to the converter, insert the 
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oxygen gun into the furnace from the top and the oxygen flow with purity greater than 99% is blown into the high 

pressure. In this way, the high-temperature steel directly with oxygen flow oxidation reaction removes impurities. When 

the chemical composition of the molten steel and the ambient temperature meet the process requirements, the steel can 

be prepared. The process is shown in Figure 1. 

At this time, there must be a certain amount of dissolved oxygen remaining in the metal, which will bring many 

defects:(1) the pouring process cannot be carried out smoothly; (2) it destroys the rational structure of ingot; (3) oxygen 

ages solid steel and increases its hardness, magnetism and resistivity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic diagram of modern steelmaking technology 

Therefore, the remaining oxygen in the metal must be removed before the steel is produced or poured. the amount of 

oxygen in a metal can be reduced to the limit by adding one or more elements that are more oxidizing than iron, that is, 

deoxidation.  

2. Method 

2.1 Obtaining the Main Factors Affecting the Alloy Yield of Carbon and Manganese 

2.1.1 Data Preprocessing 

It is assumed that the data are reliable and the experimental data are imported into the preprocessing, normalization and 

operation process of the model. The success rate of the model for predicting the yield of C and Mn depends on the content 

of C and Mn in molten steel. Due to the influence of instrument precision, reliability, field measurement environment, 

furnace temperature and other factors, it is inevitable that there were anomalies in the process of data collection. If these 

data are used for prediction, the success rate and accuracy of prediction will decrease. In this step, not only the 

meaningless and missing given data should be eliminated, but also the given data should be ensured to a certain degree of 

stability, that is, the large data should be eliminated. Generally speaking, the commonly used criteria for judging gross 

data are: PauTa Criterion, Chauvenet Criterion, Romanovs Criterion, Grubbs Criterion, Dixon Criterion (Chen et at., 

2007). In addition, considering the dimensional difference between different quantities, it is necessary to normalize the 

data before applying various solving methods. 

Romanovs Criterion for elimination of data: the principle of the Romanovs Criterion is that firstly to delete a suspect 

measured value and then by the t-distribution test whether the measurement value of the elimination contains gross error, 

so this method is also called t-test. 

Specific contents: 

Select significance degree a and data processing length n to find the corresponding coefficient K in the t-distribution table; 

Calculate the mean value of the processed data; 

Calculate the criteria for processing data; 

If |detection value -mean|> (K*standard deviation), then the detection value is gross data and needs to be removed. 

2.1.2 Determine the Influencing Factors of Alloy Yield 

In the actual production, the alloy yield is directly related to the terminal content of the converter of each element, the 

content of the positive sample of continuous casting, the amount of alloy material input and the content of its chemical 

composition. We can determine the historical data of the alloy yield from these data. There is also an indirect relationship 
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between the alloy yield and the furnace environment and the molten steel weight. Therefore, the converter terminal 

temperature, the molten steel net weight, the converter terminal point and the alloy material input quantity should all be 

considered as factors affecting the alloy yield. The formula for calculating the yield of element 𝑖 alloy is as follows:  

 i elemental alloy yiel =
𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑖 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑏𝑦 𝑚𝑜𝑙𝑡𝑒𝑛 𝑠𝑡𝑒𝑒𝑙

𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖 𝑎𝑑𝑑𝑒𝑑
 (1) 

First, the furnace number with missing data was removed and a valid value for the yield between [0,100%] was got. Then, 

the Romanovs Criterion was used to delete the gross data to obtain 184 sets of data of C alloy yield and 189 sets of data of 

Mn alloy yield. 

2.1.3 Correlation Analysis 

We need to quantify the correlation between the possible influencing factors and the ally yield of C and Mn. The 

commonly used correlation analysis includes chart correlation analysis, covariance and covariance matrix, correlation 

coefficient, unitary regression and multiple regression, information entropy and mutual information selection. Starting 

from correlation coefficient, the gray correlation analysis method was chosen (the GCA method). Since the oxygen 

content in molten steel is not given, the effect of oxygen content should not be considered on the absorption of alloy 

chemical elements by molten steel in the establishment of correlation model and subsequent prediction model. 

Correlation analysis is a grey process based on grey system, by comparing the time series among factors to determine 

which are the dominant ones. In other words, the degree of correlation of the sequence is determined by the degree of 

similarity of the trend of the curve. The factors affecting the ally yield of C and Mn were studied and analyzed, so two 

"many-to-one" grey correlation analyses were conducted. 

(1) Data normalization 

Min-max Normalization, also known as deviation Normalization, is a linear transformation of the original data that maps 

the resulting values between [0 to 1]. The conversion function is as follows: 

 
𝑥𝑖
∗ =

𝑥𝑖 −𝑚𝑖𝑛{𝑋}

𝑚𝑎𝑥{𝑋} −𝑚𝑖𝑛{𝑋}
 (2) 

Where: 

𝑚𝑎𝑥{𝑋} = the maximum value of sample data. 

𝑚𝑖𝑛{𝑋}  = the minimum value of sample data. 

(2) Gray correlation coefficient calculation 

The sequence of influencing factors, that is, the comparison number: 

 𝑋𝑖 = (𝑥𝑖(1), 𝑥𝑖(2),⋯ , 𝑥𝑖(𝑘),⋯ , 𝑥𝑖(𝑛)), 𝑖 = 1,2,3,⋯ ,24 (3) 

Reference number: 

 𝑌𝑗 = (𝑦𝑗(1), 𝑦𝑗(2),⋯𝑥𝑖(𝑘),⋯ , 𝑦𝑗(𝑛)) , 𝑗 = 1,2    (4) 

The formula for calculating the correlation coefficient is as follows: 

 𝜉𝑗𝑖(𝑘) =
𝑚𝑖𝑛𝑚𝑖𝑛|𝑥𝑗(𝑘) − 𝑥𝑖(𝑘)| + 𝜌𝑚𝑎𝑥𝑚𝑎𝑥|𝑥𝑗(𝑘) − 𝑥𝑖(𝑘)|

|𝑥𝑗(𝑘) − 𝑥𝑖(𝑘)| + 𝜌𝑚𝑎𝑥𝑚𝑎𝑥|𝑥𝑗(𝑘) − 𝑥𝑖(𝑘)|
 (5) 

Where, 𝜉𝑗𝑖(𝑘) is the 𝑖 − 𝑡ℎ  comparison sequence and the 𝑗 − 𝑡ℎ reference sequence.𝑚𝑖𝑛𝑚𝑖𝑛|𝑥𝑗(𝑘) − 𝑥𝑖(𝑘)|、
𝑚𝑎𝑥𝑚𝑎𝑥|𝑥𝑗(𝑘) − 𝑥𝑖(𝑘)| are the minimum and maximum values after the difference between the reference sequence 

matrix and the comparison sequence matrix. The reciprocal of |𝑥𝑗(𝑘) − 𝑥𝑖(𝑘)| is the antiderivative distance and its 

magnitude determine the degree of correlation. 𝜌 is the resolution, which is usually between [0,1].0.5 was valued.  

Because of the factor 𝜉𝑗𝑖(𝑘) can only reflect the correlation between point and point, the correlation information is 

scattered, so it is not convenient to describe the correlation between sequences. 𝜉𝑗𝑖(𝑘) 𝑤𝑎𝑠 deduced together and the 

calculation formula of correlation degree is defined as follows: 

 𝑟𝑗𝑖 =
∑ 𝜉𝑗𝑖(𝑘)

𝑛

𝑘=1

𝑛
 (6) 

Where, 𝑟𝑗𝑖 represents the degree of correlation, the positive effect is the positive correlation, conversely the negative 

correlation, |𝑟𝑗𝑖| greater than 0.7 is a strong correlation, less than 0.3 is a weak correlation. The coefficients of each 

influencing factor are obtained as shown in Figure 2. 
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Figure 2. C and Mn yield correlation 

The description of the used notation in Figure 2 is as follows: 

X0: the converter number; 

X1: the terminal temperature of converter; 

X2, X3,⋯X6: terminal C, terminal Mn, terminal S, terminal P, terminal Si; 

X7: the net weight of molten steel; 

X8~X23: some kinds of alloys; 

Z1~Z9: Ceq_val,Cr,Ni_val,Cu_val,V_val,Alt_val,Als_val,Mo_val,Ti_val; 

Y1: the yield of C; 

Y2: the yield of Mn. 

In summary, the main factors affecting the yield of C are the terminal temperature of converter, the net weight of molten 

steel, the positive sample Ceq_val, the petroleum coking agent, and the manganese silicon alloy FeMn68Si18 (qualified 

block). The main factors affecting the yield of Mn are the terminal temperature of converter, terminal C, terminal Mn, 

terminal S, terminal P, terminal Si, the net weight of molten steel, Ceq_val, Cr and the petroleum coking agent. 

2.2 Predicting the Alloy Yield by Different Kinds of Model Respectively 

In order to ensure the reliability of the model and the accuracy of the prediction, several prediction models should be 

introduced to verify each other, so as to establish a comprehensive prediction model. Considering the complexity of the 

operational model, neural network and support vector machine were taken into consideration. In the process of specific 

model operation, 184 groups of effective C alloy data were divided into 160 training sets and 24 testing sets and 189 

groups of effective Mn alloy data were parted into 160 training sets and 29 test sets. The training set is the training data 

used to build the model and the testing set is used to test the prediction accuracy of the model. In addition, the stepwise 

multiple regression analysis model, the BP neural network model and the regression support vector machine model for 

training and predicting were used and the prediction model with high prediction accuracy through the comparison and 

analysis of various prediction methods was obtained. 

2.2.1 The Stepwise Multiple Regression Analysis Model 

The essence of the stepwise multiple regression method is to introduce variables into the model one by one, to conduct F 

test after each introduction of explanatory variables and to execute t test for variables that have been introduced one by 

one. When previously introduced explanatory variables become less significant due to subsequent introduction of 

explanatory variables, they are eliminated to ensure that only significant explanatory variables are included in the 

regression equation before each introduction of a new variable. This is an iterative process until no significant explanatory 

variables are selected into the regression equation to ensure that the final set of explanatory variables is optimal 

(Zhou,1990). 

Stepwise regression algorithm steps:  
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Step1: A unary regression model of p regression independent variables is established as follows:  

 𝑌 = 𝛽0 + 𝛽𝑖𝑋𝑖 + 𝜀, 𝑖 = 1,… , 𝑝 (7) 

The value of the F test statistic of the corresponding regression coefficient of the variable 𝑋𝑖 is calculated ,denoted 

as 𝐹1
(1), … , 𝐹𝑝

(1)
, the maximum value 𝐹𝑖1

(1)
 is taken and the calculation formula is as follows: 

 𝐹𝑖1
(1) = 𝑚𝑎𝑥{𝐹1

(1), … , 𝐹𝑝
(1)} (8) 

For the given significance level 𝑎, make the corresponding critical value 𝐹(1), when𝐹𝑖1
(1) ≥ 𝐹(1), then 𝑋𝑖1 is introduced 

into the regression model and 𝐼1 is remembered as the selected variable index set. 

Step2: A binary regression model of dependent variable Y and independent variable subset is established, with a total of 

p-1: 

{𝑥𝑖1 , 𝑥1}, … , {𝑥𝑖1 , 𝑥𝑖1−1}, {𝑥𝑖1 , 𝑥𝑖1+1},… , {𝑥𝑖1 , 𝑥𝑝} 

The value of the F test statistic of the corresponding regression coefficient of the variable is calculated, denoted 

as 𝐹𝑘
(1)(𝑘 ∉ 𝐼1), the maximum value 𝐹𝑖2

(1)
 is taken and the calculation formula is as follows: 

 𝐹𝑖2
(2) = 𝑚𝑎𝑥{𝐹1

(2), … , 𝐹𝑝
(2)} (9) 

For the given significance level 𝑎, make the corresponding critical value 𝐹(2) , when 𝐹𝑖2
(2) ≥ 𝐹(2), then 𝑋𝑖2 is introduced 

into the regression model and  𝐼2  is remembered as the selected variable index set. Otherwise, the operation that 

introduce the variables ends. 

Step3: The dependent variable and the variable subset {𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑘} are considered if no variable is introduced after the 

F test, it ends; otherwise, Step2 is repeated. 

2.2.2 The BP Neural Network Model 

Artificial neural Network (Zhuo, 2011) is a complex Network system that is connected by a large number of simple basic 

elements - neurons. It can process information in parallel and non-linear by simulating the way of processing information 

in human brain. BP neural network, through the training of sample data, constantly modify the network weight and 

threshold value, was used, so that the error adjustment direction is always along the direction, where the error drops the 

fastest, so as to approximate the expected output. 

The establishment of neural network cannot be separated from activation function. In the neuron, the inputs are weighted 

and add up to a function called the activation function. If the activation function is not used, each layer of output is a linear 

function of the input at the top and no matter how many layers there are in the neural network, the output is a linear 

combination of the inputs. If used, the activation function introduces a nonlinear factor to the neuron, so that the neural 

network can arbitrarily approximate any nonlinear function, so that the neural network can be applied to many nonlinear 

models. Generally speaking, there are two activation functions: Sigmoid function and Tanh function. 

2.2.2.1 Create the BP Neural Network Model 

The BP neural network with three layers of multiple input and single output to build the prediction model was used, in 

which the number of hidden layer neurons is 10. Taking the yield of alloy C as an example, the topology diagram of 

network structure is shown in Figure 3. 
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Figure 3. BP neural network structure topology 

Sigmoid differentiable function and linear function as activation function of the network were used. Tansig function as the 

activation function of hidden layer neurons and Logsig function as the activation function of the neuron in the output layer 

were, respectively, chosen. 

2.2.3 The Regression SVM Model 

Traditional Support Vector Machine (SVM) is a generalized linear classifier that classifies input data according to 

supervised learning. The decision boundary of this classifier is the maximum-margin hyperplane for solving the learning 

samples, that is, the interval of the two classes is the maximum (Zhou, 2016). In order to extend SVM from solving 

classification problems to solving regression problems, that is to solve regression fitting problems, Smola and Schölkopf 

(2004) introduced ε- insensitive loss function on the basis of SVM, as follows: 

𝐿(𝑧) = 𝑚𝑎𝑥(0, |𝑧| − 𝜀) (10) 

Thus, Support Vector Machine for Regression is obtained. At this time, the standard SVM algorithm is also known as 

Support Vector Classification (SVC) and its hyperplane decision boundary is the regression model of SVR, as the 

following formula: 

𝑓(𝑥) = 𝑤^𝑇 𝑥 + 𝑏  (11) 

The basic idea of SVR is no longer to find the maximum margin hyperplane to separate the two types of samples, but to 

find the maximum margin hyperplane to minimize the error of all training samples from the classification plane, as shown 

in Figure : 

Training sets 

𝑥1,1⋯𝑥𝑖,1⋯𝑥𝑛,1 

𝑥1,2⋯𝑥𝑖,2⋯𝑥𝑛,2 
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𝑥1,𝑚⋯𝑥𝑖,𝑚⋯𝑥𝑛,𝑚 
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Figure 4. Schematic diagram of regression support vector machines 

The SVR is optimized in the following quadratic convex form:  

 
𝑚𝑎𝑥

1

2
‖𝑤‖2 

𝑠. 𝑡. |𝑦𝑖 − 𝑓(𝑥)| ≤ 𝜀 

(12) 

Using the relaxation variables 𝜉, 𝜉∗ to represent the piecewise value of the ε-insensitive loss function can be obtained: 

 

𝑚𝑎𝑥
1

2
‖𝑤‖2 + 𝐶∑ (𝜉𝑖 + 𝜉𝑖

∗)
𝑁

𝑖=1
 

𝑠. 𝑡. {

|𝑦𝑖 − 𝑓(𝑥)| ≤ 𝜀 + 𝜉𝑖
𝜉 ≥ 0
𝜉∗ ≥ 0

 

(13)  

Similar to the soft margin SVM, Lagrange functions and dual problems can be obtained by Lagrange multipliers 

(𝛼, 𝛼∗, 𝜇, 𝜇∗)： 

 

ℒ(𝑤, 𝑏, 𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝜇, 𝜇∗)

=
1

2
‖𝑤‖2 + 𝐶∑ (𝜉𝑖 + 𝜉𝑖

∗)
𝑁

𝑖=1
−∑ 𝜇𝑖𝜉𝑖

𝑁

𝑖=1
−∑ 𝜇𝑖

∗𝜉𝑖
∗

𝑁

𝑖=1

+∑ 𝛼𝑖[𝑓(𝑋𝑖)𝑖 − 𝑦𝑖 − 𝜀 − 𝜉𝑖]
𝑁

𝑖=1
+∑ 𝛼𝑖

∗[𝑓(𝑋𝑖)𝑖 − 𝑦𝑖 − 𝜀 − 𝜉𝑖
∗]

𝑁

𝑖=1
 

(14) 

 

𝑚𝑎𝑥∑ [𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖) − 𝜀(𝛼𝑖

∗ + 𝛼𝑖)]
𝑁

𝑖=1
−
1

2
∑ ∑ [(𝛼𝑖

∗ − 𝛼𝑖)(𝑋𝑖)
𝑇(𝑋𝑗)(𝛼𝑗

∗ − 𝛼𝑗)]
𝑁

𝑗=1

𝑁

𝑖=1
 

𝑠. 𝑡.

{
 

 ∑ (𝛼𝑖
∗ − 𝛼𝑖)

𝑁

𝑖=1
= 0

0 ≤ 𝛼𝑖 ≤ 𝐶

0 ≤ 𝛼𝑖
∗ ≤ 𝐶

 

(15) 

The dual problem has the following KKT conditions: 

ξ 

ε 

y 

x 

ξ 

ε 
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{
 

 
𝛼𝑖𝛼𝑖

∗ = 0, 𝜉𝑖𝜉𝑖
∗ = 0

(𝐶 − 𝛼𝑖)𝜉𝑖 = 0, (𝐶 − 𝛼𝑖
∗)𝜉𝑖

∗ = 0

𝛼𝑖[𝑓(𝑋) − 𝑦𝑖 − 𝜀 − 𝜉𝑖] = 0

𝛼𝑖
∗[𝑦𝑖 − 𝑓(𝑋) − 𝜀 − 𝜉𝑖

∗] = 0

 (16) 

The form of SVR that can be obtained by solving is as follows, that is, SVR can be solved by kernel method to obtain 

nonlinear regression results (Han,2010). 

 𝑓(𝑋) =∑ (𝛼𝑖
∗ − 𝛼𝑖)𝑋𝑖

𝑇𝑋
𝑚

𝑖=1
+ 𝑏 (17) 

2.3 Calculating the Production Cost Mathematical Programming Model 

The optimization model of molten steel deoxidation alloying operation cost is established according to the method of 

linear programming, which is composed of objective function, decision variables and restrictions. The objective function 

is to meet the minimum cost of the alloy and the decision variable is the input amount of the alloy material. Restrictions 

include the constraints on the composition of the steel species, the constraints on the amount of alloy and the smelting 

technical specifications.  

After the mathematical planning model is established, the optimization model should be solved. Simplex genetic and 

simulated annealing algorithms are often used to solve the optimization models. The ordinary simplex method can solve 

linear programming problems, where all the vectors are non-negative and the constraints are "≤”, the two-stage simplex 

algorithm can solve "=", "≤", "≥" and mixed constraint linear programming models. It is worth noting that although the 

simplex method is faster and simpler in operation, the accuracy is lower. Therefore, at the level of theoretical derivation, 

we prefer to use genetic algorithms to solve the model. 

2.3.1 Linear Programming Model 

(1)  Decision variable 

When adjusting the molten steel composition of a specified steel type, it is usually necessary to add multiple alloy 

materials. A total of r kinds of alloy materials is set to adjust the m element composition index of the molten steel. The 

amount of each alloy 𝑥1, 𝑥2, … , 𝑥𝑟 is the decision variable (Yang,2014). 

(2)  Objective function 

The objective function is to minimize the total cost of alloy use, as the following formula: 

 𝑚𝑖𝑛𝐹(𝑋) = 𝑃1𝑀1 + 𝑃2𝑀2 +⋯+ 𝑃𝑟𝑀𝑟 =∑ 𝑃𝑖𝑀𝑖

𝑟

𝑖=1
 (18) 

Where 𝐹(𝑋) is the total cost of the alloy, the unit is dollar; 𝑝𝑖 is the unit price of the 𝑖 − 𝑡ℎ alloy material, the unit is 

dollar ⋅ kg−1; 𝑀𝑖 is the amount of 𝑖 − 𝑡ℎ alloy material, the unit is kg. 

(3)  Restrictions 

The alloy element content constraint should meet national standards. Each alloy material contains multiple elemental 

components. After all alloy materials are added to the molten steel, the chemical composition of the molten steel must 

meet the national standards for the elemental composition of steel types required. In actual production, it is usually 

specified that the composition of the specified element in the molten steel is controlled within a certain upper and lower 

limit range, as shown in Formula 19: 

 𝐸𝑗𝑚𝑖𝑛 ≤
𝛴𝑖=1
𝑟 𝐶𝑖𝐴𝑗𝑥𝑖𝑌𝐴𝑗 +𝑀𝑠𝑡𝐶𝑠𝑡𝐴𝑗

′

𝛴𝑖=1
𝑟 𝑥𝑖𝑌𝐴𝑗 +𝑀𝑠𝑡

≤ 𝐸𝑗𝑚𝑎𝑥(𝑗 = 1,2, … ,𝑚) (19) 

Where: 

𝑟 = the number of available alloy materials; 

𝑚 = the number of elements controlled in molten steel; 

𝐸𝑗𝑚𝑖𝑛 = the control target lower limit of the 𝑗 − 𝑡ℎ controlled element in the molten steel and the unit is %; 

𝐸𝑗𝑚𝑎𝑥 = the control target upper limit of the 𝑗 − 𝑡ℎ controlled element in the molten steel and the unit is %; 

𝑌𝐴𝑗 = the yield of 𝐴𝑗 of the alloying element in the specified steel type in the cost optimization model and the unit 

is %. 

In summary, the cost optimization model for molten steel deoxidation and alloying operations has been constructed, as 
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follows: 

 

𝑚𝑖𝑛𝐹(𝑋) = 𝑃1𝑀1 + 𝑃2𝑀2 +⋯+ 𝑃𝑟𝑀𝑟 =∑ 𝑃𝑖𝑀𝑖

𝑟

𝑖=1
 

𝑠. 𝑡. {
𝐸𝑗𝑚𝑖𝑛 ≤

𝛴𝑖=1
𝑟 𝐶𝑖𝐴𝑗𝑥𝑖𝑌𝐴𝑗 +𝑀𝑠𝑡𝐶𝑠𝑡𝐴𝑗

′

𝛴𝑖=1
𝑟 𝑥𝑖𝑌𝐴𝑗 +𝑀𝑠𝑡

≤ 𝐸𝑗𝑚𝑎𝑥(𝑗 = 1,2, … ,𝑚)

𝑀1, … ,𝑀𝑟 > 0

 

(20) 

2.3.2 Solving Process of Genetic Algorithm 

For the above multivariate linear programming model, the genetic algorithm which is easy to obtain the global optimal 

solution was used. (Tao and Guo, 2003). 

(1) Coding 

A binary code for chromosomes were used. The string length of an individual refers to the number of types 𝑟 of alloy. The 

term in the string is denoted by 𝑎, recorded as  𝑎𝑖
𝑘𝑚,that is the 𝑖 − 𝑡ℎ alloy material in the 𝑚 − 𝑡ℎ chromosome  𝑘𝑚 

string, then the chromosome can be expressed as follows: 

 𝑎1
𝑘𝑚 , 𝑎2

𝑘𝑚 , … , 𝑎𝑟
𝑘𝑚 = (𝐴1

𝑘𝑚 , 𝐴2
𝑘𝑚 , … , 𝐴𝑛

𝑘𝑚) (21) 

Where，𝐴𝑖
𝑘𝑚 = 𝑎1

𝑘𝑚(𝑖 = 1,2, … , 𝑟). 

(2) Initial population 

The individuals of the initial group are randomly generated. Different from the traditional optimization methods, the 

starting point of genetic algorithm iteration is not one, but a group. The initial population is a randomly generated binary 

code string whose length corresponds to the length 𝐿 of the chromosome. 

(3) Fitness 

The purpose of optimizing the target allocation is to minimize the total cost of the whole deoxidizing alloying operation 

process of steel, so the objective function  𝐹(𝑥) is taken as the individual fitness. 

(4) Duplication 

Copy the existing good ones, add them to the new group and remove the bad ones. Generally, the roulette method is used 

to select excellent individuals. The roulette method means that the probability of individuals being selected depends on 

the relative fitness of individuals, as follows: 

 𝑝𝑖 =
𝐹𝑖

∑ 𝐹𝑖
𝑟
𝑖=1

 (22) 

Where, 𝑝𝑖 represents the probability that individual 𝑖 is selected; 𝐹𝑖 represents the fitness of the individual; ∑ 𝐹𝑖
𝑟
𝑖=1  said 

the sum total of population fitness. 

(5) Mating 

Mating individuals randomly select new self-replicating groups, using roulette, which means trying to select the best and 

eliminate the worst. 

About the rules of mating, a common method was adopted, namely, randomly select a mating site, the genes before the 

mating site of the two offspring inherit the genes before the mating site of the parents and the genes after the mating site 

are selected by the heterologous gene order. The parameters that control the number of individual exchanges are 

determined as follows: 

 𝑀𝐶 = 𝑝𝐶 ×𝑀 (23) 

Where 𝑝𝐶 is the exchange probability and 𝑀 is the number of individuals in the group. 

(6) Variation 

Randomly changing a gene in any individual and then adding the individual to a new population. The probability of 

mutation can be derived as follows:  

 𝑝𝑚 =
𝐵

𝑀𝐿
 (24) 

Where 𝐵 represents the number of mutated genes in each generation; 𝑀 represents the number of individuals in the 
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population; 𝐿 is the number of genes in an individual. According to practical experience, 𝑝𝑚 is usually 0.005~0.1, and 

the mutated gene is generated randomly. 

(7) Termination 

The maximum genetic algebra MAX is 100. Once the number of iterations of the genetic algorithm reaches MAX, the 

operation is stopped and the result is output. At the same time, if the fitness difference of the optimal individuals in the 

adjacent two generations is less than an arbitrarily small integer, the algorithm also terminates. 

3. Results 

3.1 Stepwise Multiple Regression Results 

Through the stepwise regression algorithm, the prediction alloy yield of C and Mn and the real values were calculated, as 

shown in Figure 5 and Figure 6, respectively: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparison of predictive values of C alloy yield with the real values 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparison of predictive values of Mn alloy yield with the real values 

Where, the maximum deviation between the prediction results and the real values of the alloy yield of C and Mn is 0.1470 

and 0.0588, respectively. Therefore, the stepwise multiple regression analysis model can predict the yield of alloy 

accurately. 

3.2 BP Neural Network Prediction Results 

By establishing a three-layer multi-input single-output BP neural network, the prediction ally yield of C is shown in 

Figure 7and the prediction ally yield of Mn is shown in Figure 8. 
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Figure 7. Comparison of predictive values of C alloy yield with the real values 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Comparison of predictive values of Mn alloy yield with the real values 

In the comparison between the prediction results and the real values of the alloy yield of C and Mn, the mean square error 

(MSE) of C alloy is 0.1093 and the maximum deviation is 0.0868. The mean square error (MSE) of Mn alloy is 0.1368 

and the maximum deviation is 0.0567. It can be seen that the minimum deviation of the BP neural network prediction 

model is small and it has a relatively accurate prediction effect on alloy yield. 

3.3 The Regression SVM Results 

From the prediction model of the regression SVM, the alloy yield of C and Mn were predicted. The training results of the 

training set and the test results of the test set are shown in Figures 9 to 12. 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of predictive values of C alloy yield training set with the real values 
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Figure 10. Comparison of predictive values of C alloy yield test set with the real values 

 

 

 

 

 

 

 

 

 

 

Figure 11. Comparison of predictive values of Mn alloy yield training set with the real values 

 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison of predictive values of Mn alloy yield test set with the real values 

As can be seen from the above figure, the mean square errors between the prediction results of the C and Mn alloy yield 

test sets and the real values are 0.0216 and 0.1363, respectively; The maximum deviations of the C and Mn are 0.0682 and 

0.0554, respectively. It can be seen that the regression SVM model has a better prediction effect on the alloy yield, and it 

is better than the previous two models. 
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3.4 Comparative Analysis of the Three Models 

The maximum deviation values of the three models are shown in Table 1. 

Table 1. Comparison of the maximum deviation values of the three prediction models 

Maximum deviation C alloy Mn alloy 

Stepwise MRA model 0.1470 0.0588 

BP neural network model 0.0868 0.0567 

Regression SVM model 0.0682 0.0554 

From the table above, the three models have the effect of gradual optimization on the prediction of alloy yield. Among 

them, the regression SVM model is the optimal prediction one and the maximum deviation values of C and Mn alloys are 

0.0682 and 0.0554, respectively, which has a good estimative effect. 

The prediction results of the error C alloy yield of the three models are shown in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Comparison of prediction results of C alloy yield of three models 

As shown, the error value of the regression SVM is significantly smaller than the stepwise MRA error and neural 

network error. 

3.5 Genetic Algorithm Cost Calculation Results 

In order to prevent the computation time from taking too long, set the population size as 50 and the maximum genetic 

algebra as 100 and run the genetic algorithm by means of relay evolution. Through the genetic algorithm, the schemes 

of alloy batching that can be solved are shown in Table 2. 
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Table 2. Cost solution results of genetic algorithm 

Furnace number 7A06820 7A06851 7A06876 706811.000 7A6787.000 

FeVN FeV55N11-A 0.000 0.000 0.000 0.000 0.000 

Low alumino-silicon 0.000 0.000 0.000 0.000 0.000 

Vanadium nitrogen 

alloy(imported) 
0.000 0.000 0.000 0.000 0.000 

Ferrovanadium (FeV50-A) 0.000 0.000 0.000 0.000 0.000 

Ferrovanadium (FeV50-B) 0.000 0.000 0.000 0.000 0.000 

Silicon aluminum calcium 0.000 0.003 0.000 0.000 0.000 

Silicon aluminum alloy 

FeAl30Si25 
0.000 0.001 0.061 0.064 0.000 

Silicon aluminum 

manganese alloy ball 
0.000 0.004 19.403 0.000 13.368 

Silicon-manganese surface 

(Silicon manganese slag) 
0.008 0.003 46.576 195.496 215.490 

Ferrosilicon (Qualified 

block) 
0.000 0.000 0.000 0.000 0.000 

Ferrosilicon FeSi75-B 1.330 7.825 0.000 0.000 0.000 

Petroleum coke 

recarburizer 
30.447 14.146 81.442 84.440 51.272 

Manganese-silicon alloy 

FeMn64Si27 
0.000 0.000 31.483 0.002 28.833 

Manganese-silicon alloy 

FeMn68Si18 
1453.380 1290.456 1470.847 1338.594 1273.184 

Silicon carbide (55%) 114.175 8.664 118.716 1.698 102.807 

Silicon calcium carbon 

deoxidizer 
0.000 0.138 0.020 0.199 0.000 

Original cost(dollar) 3269.11 3250.94 3369.24 3465.80 3185.29 

Cost after optimization 

(dollar) 
1812.80 1526.10 1980.26 1827.85 1889.39 

Optimization ratio 44.55% 53.06% 41.07% 47.26% 40.68% 

 Unit: kilogram  

According to the above table, the original costs of the five furnace Numbers in the randomly selected forecast are 3269.11, 

3250.94, 3369.24, 3465.80 and 3185.29 dollars, respectively. The cost after optimized configuration is 1812.80, 1526.10, 

1980.26, 1827.85 and 1889.39 dollars, respectively. The optimization ratio reached 44.55%, 53.06% and 41.07%, 47.26% 

and 40.68%, respectively. Therefore, this model has a good cost optimization effect. 

4. Discussion 

To explore the robustness of the model, the unit price of 16 alloys were increased by 20% respectively, and randomly 

selected furnace number 7A06820 for cost analysis. The results are shown in Table 3. 
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Table 3. Sensitivity analysis of alloy prices 

 Initial cost 

Total cost after 

20% change in 

alloy price 

Variation Rate of change 

FeVN FeV55N11-A 1812.80 1819.58 6.78 0.3740% 

Low alumino-silicon 1812.80 1813.16 0.36 0.0200% 

Vanadium nitrogen alloy 

(imported) 
1812.80 1822.98 10.18 0.5616% 

Ferrovanadium (FeV50-A) 1812.80 1813.75 0.95 0.0524% 

Ferrovanadium (FeV50-B) 1812.80 1824.27 11.47 0.6327% 

Silicon aluminum calcium 1812.80 1810.86 -1.94 -0.1070% 

Silicon aluminum alloy 

FeAl30Si25 
1812.80 1810.95 -1.85 -0.1021% 

Silicon aluminum 

manganese alloy ball 
1812.80 1823.64 10.84 0.5980% 

Silicon-manganese surface 

(Silicon manganese slag) 
1812.80 1823.05 10.25 0.5654% 

Ferrosilicon (Qualified 

block) 
1812.80 1810.44 -2.36 -0.1302% 

Ferrosilicon FeSi75-B 1812.80 1821.44 8.64 0.4766% 

Petroleum coke recarburizer 1812.80 1805.01 -7.79 -0.4297% 

Manganese-silicon alloy 

FeMn64Si27 
1812.80 1812.78 -0.02 -0.0011% 

Manganese-silicon alloy 

FeMn68Si18 
1812.80 1822.34 9.54 0.5263% 

Silicon carbide (55%) 1812.80 1819.66 6.86 0.3784% 

Silicon calcium carbon 

deoxidizer 
1812.80 1825.77 12.97 0.7155% 

Unit: dollar  

According to the above table, when the unit price of each alloy changes by 20%, the maximum total steelmaking cost is 

1825.77 dollars, which is 12.97 dollars more than the initial cost and the rate of change is 0.7155%.The minimum cost is 

1805.01 dollars, which is 7.79 dollars less than the initial cost and the rate of change is -0.4297%. Among the 16 kinds of 

alloy raw materials added, the maximum cost change rate is less than 1%. Therefore, the mathematical model established 

in this paper has strong robustness and is applicable to the decision analysis of steel mills. 

5. Conclusion 

Due to the problems that steel companies must face when improving their competitiveness by ensuring the quality of 

molten steel while minimizing the production cost of alloy steel, a mathematical model of deoxidation alloying was 

established through historical data to predict the alloy yield and to optimize the type and quantity of input alloys. Firstly, 

the GCA method was used to quantify the influencing factors of alloy yield, which has a more accurate prediction effect. 

Secondly, the stepwise MRA, the BP neural network and the regression SVM models were used to predict the yield of C 

and Mn alloys. After comparing the prediction results, we conclude that the regression SVM model is more appropriate 

Thirdly, in order to reduce the manufacturer's production cost, the cost optimization model uses the idea of mathematical 

programming, with the minimum cost of alloys as the objective function, the input amount of alloy materials as the 

decision variable, and the steel grade composition limits determined by national standards as restrictions. Then, the 

genetic algorithm was used to calculate the production cost. Finally, to explore the robustness of the model, the unit prices 

of 16 alloys were increased by 20%, and the largest change rate was 0.7155%, the lowest was -0.4297%, which proved 

that the mathematical model can be a certain reference value for the current production of iron and steel enterprises. 

However, the model still has shortcomings. When establishing the cost optimization model, the upper limit of the amount 
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of alloy material input was not used as a constraint. In production practice, there is usually a maximum amount of alloy 

material restrictions 𝑀𝑖 ≤ 𝐺𝑖, where 𝐺𝑖 is the maximum allowable amount of the 𝑖 − 𝑡ℎ alloy material. Therefore, the 

limitation of the maximum amount of material input will have a certain impact on the cost, but it has not taken into 

account. 
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