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Abstract 

A turbulence closure based on transport equations for the square-root of the kinetic energy of turbulence, q=k1/2 and the 

length-scale, ℓ, is proposed and tested. The model is topography parameter free (no wall distance needed), uses local 

wall proximity indicators instead, and is meant to be applicable to both wall-bounded and free shear flows. Solving 

directly for the turbulence length-scale, invoking Dirichlet boundary conditions for both q and ℓ and the fact that q 

varies linearly across the viscous sublayer contribute to reduced sensitivity of this model to near-wall grid concentration 

(as long as the sublayer is resolved) and to less numerical stiffness, hence faster convergence. A variable C parameter 

is featured in this model to account for non-simple shear where mean strain and vorticity rates are different. Several 

cases, covering a wide variety of flows, are presented to demonstrate the model’s performance. Fluids engineers whose 

work involves complex 3D topologies, particularly with non-stationary grids which require re-computing wall distance 

arrays at each time-step (a heavy demand on time and budget) may appreciate the fact that no distance arrays are needed 

for the q- ℓ model. 

Keywords: turbulence model, wall-distance-free, local, pointwise, variable C, fast convergence 

List of Symbols 

2D                              two-dimensional 

3D                              three-dimensional 

A                          coefficient in damping function, Eq. (5) 

c                            chord length [m] 

Cf                           skin friction coefficient 

Cp                          pressure coefficient 

Cε1, Cε2                 constants in Eq. (7)       

Cµ                         0.09, eddy viscosity coefficient 

Cμ̃                            variable Cμ, Eq. (3) 

D                          diameter [m]  

fμ                             low Reynolds damping function, Eq. (5) 

H                          channel height [m] 

k                          turbulence kinetic energy [(m/s)2] 

ℓ                          turbulence length-scale [m] 

M                       Mach number 

p                         pressure [Pa]  

P
k                                    turbulence kinetic energy production,   Eq.(8) 

q = k                Eq. (6) 

Re                      Reynolds number 

Rt=qℓ/ν             turbulence Reynolds number  

Ry=qy/             Reynolds number based on normal distance  
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S                        mean strain magnitude [s-1] 

T                        temperature [K] 

t                         time [s] 

Tu                     turbulence intensity (Tu = (√2𝑘/3)/U∞) 

U,V,W              Cartesian mean velocity components [m/s]   

u,v,w                Cartesian fluctuating velocity components [m/s] 

uiuj̅̅ ̅̅ ̅                  Reynolds stress tensor [(m/s)2]      

uτ = (τ/ρ)w
1/2     friction velocity [m/s] 

x,y,z                Cartesian streamwise, normal and transverse coordinates [m] 

y+ = yuτ/νw      turbulent inner layer nondimensional coordinate 

y∗ = Cμ
1 4⁄

y√k/νw  turbulent inner coordinate based on k 

α                     angle-of-attack  [deg.]     

δ                      boundary layer thickness [m] 

δij                    Kronecker delta 

ε                      turbulence kinetic energy dissipation rate [m2/s3] 

                     fraction indicating wing section location (0 at root, 1 at wing tip)   

κ ≈ 0.41         von Karman Constant 

µ                    dynamic molecular viscosity [kg/(m s)] 

µt                   dynamic eddy viscosity [kg/(m-s)] 

ν =µ/ρ           kinematic molecular viscosity [m2/s] 

ρ                    density [kg/m3] 

σq, 𝜎ℓ                  turbulent diffusion coefficients         

τ                    time-scale [s] or shear stress [Pa] 

ω                  turbulence inverse time-scale [s-1] 

                  mean vorticity magnitude [s-1] 

subscripts 

0                     initial state or stagnation condition 

1                     wall-adjacent cell centroid 

∞                  evaluated at freestream 

c                   based on chord length 

D                  based on diameter 

e                   external 

i or j             Cartesian component in the i- or j-direction 

i,j                  j-direction derivative of the i-component 

j                    property of jet 

t or T           turbulent 

w                 evaluated at the wall 

x                  evaluated at streamwise station x 

1. Introduction 

RANS-based engineering-oriented turbulence models are not usually adequate for a wide range of flow situations; some 

are very good in predicting external aerodynamics but fail to work well for internal flows, others predict wall-bounded 

flows adequately but not free shear flows. The aim here is to introduce a turbulence model which works well in a wide 

range of engineering flow problems. For this purpose a transport equation for the length-scale is used together with one 

for q, the square-root of the turbulence kinetic energy, together determining the eddy viscosity field. The q- equation 
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results directly from the standard k transport equation; the length-scale equation is derived from the k- model, giving 

rise to three extra diffusion terms. A judicious combination of two of these terms, together with a variable C, lead to 

generally good predictive capability of the q- ℓ closure in both free shear and wall-bounded flows, as shown in the 

results section. Additional advantages of the proposed approach, leading to fast convergence to steady state (see Fig. 13), 

are (a) replacing unnatural boundary conditions for  and  with a natural one for ℓ, since ℓ ~ y3 within the viscous 

sublayer, thus ℓw=0, (b) a simple balance between molecular diffusion and destruction, both of order y, resulting from 

the near-wall behavior of the ℓ − equation. This is in contrast with the corresponding behavior of the  and  transport 

equations which involve higher-order correlations, and (c) the choice of q, rather than k, should lessen the model’s 

sensitivity to near-wall mesh fineness thanks to the linear variation of q with respect to wall-normal distance within the 

viscous sublayer adjacent to solid surfaces. Of course, the grid must still be fine enough to enable proper resolution of 

this sublayer. 

An important aspect of this turbulence closure is the use of local wall proximity indicators, such as the turbulence 

Reynolds number Rt, rather than physical wall distance. Fluids engineers whose work involves complex 3D topologies, 

particularly for non-stationary grids which require re-computing wall distance arrays at each time-step (a heavy demand 

on time and budget) may appreciate the fact that no distance arrays are needed for the q- ℓ model. 

A previous, initial version of the q- ℓ closure has been presented (Goldberg et al., 2004) but the current one is 

considerably improved, mainly due to the variable C approach. 

2. Method 

2.1 Numerical Approach Highlights 

CFD++, a Navier-Stokes flow solver for either compressible or incompressible flows, was used here. This solver 

features a second order TVD discretization based on a multi-dimensional interpolation framework. For the results 

presented here, an HLLC Riemann solver was used to define the (limited) upwind fluxes. This Riemann solver is 

particularly suitable for high-speed flows since, unlike classical linear solvers such as Roe’s scheme, it automatically 

enforces entropy and positivity conditions. Further details about the numerical methodology in CFD++ is available in 

(Chakravarthy, 1999, Peroomian et al., 1997, Peroomian et al., 1998, Batten et al., 1997). 

2.2 Formulation 

The q- ℓ Turbulence Model Details: 

Reynolds stresses are related to the mean strain rate by the Boussinesq approximation: 

−𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ = 𝜇𝑡 (𝑈𝑖,𝑗 + 𝑈𝑗,𝑖 −
2

3
𝑈𝑘,𝑘𝛿𝑖𝑗) −

2

3
𝜌𝑞2𝛿𝑖𝑗                                                                                                               (1) 

Eddy viscosity is given by 

𝜇
𝑡

= 𝑚𝑖𝑛 {𝐶�̃�𝑓
𝜇

𝑞ℓ,
2𝑞2

3𝑆
} 𝜌                                                                                                                                                       (2) 

where S is the mean strain magnitude and fμ is a damping function described below. In Eq. 2 the eddy viscosity is 

limited by imposing the isotropic version of the Schwartz Inequality, e.g. uv̅̅ ̅2 ≤ uu̅̅̅̅  vv̅̅ ̅. This realizability constraint is 

responsible, among others, for avoiding the unphysical build-up of turbulence kinetic energy in stagnation regions such 

as flow impingement zones. In Eq. (2) this limiter uses the factor 2/3, however, for high-speed or impinging flows it is 

advantageous to replace this with the Bradshaw Constant, 0.31 (invoked in the SST closure (Menter et al., 2003)) which 

introduces a stronger realizability limiter.   

The other feature that limits unphysical turbulence build-up and, in general, accounts for non-simple shear regions, is 

the variable Cμ̃, given by a variant of the one presented in (Goldberg, 2006): 

𝐶�̃� =
𝐶𝜇 + 𝐵𝜙

1 + 𝜙𝐴                                                                                                                                                                              (3) 

where ϕ = |Ω̅ − S̅|, Ω̅ = Ωτ, S̅ = Sτ, A = 2.25, B = 0.04 and the realizable time-scale is given by  

𝜏 = 𝑚𝑎𝑥 {
ℓ

𝑞
, √

2ℓ𝜈

𝑞3
}                                                                                                                                                                  (4) 

where the 1st entry is the large eddy time-scale (k/) whereas the 2nd is the Kolmogorov dissipative eddy time-scale 
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(√2𝜈/𝜀). In case of simple shear, where Ω̅ − 𝑆 ̅= 0, 𝐶�̃� = 𝐶𝜇 = (
−𝑢𝑣̅̅̅̅

𝑘
)

2

= 0.09.  Examples where mean strain and 

mean vorticity rates are the same include fully developed flows in a pipe, a channel and over a flat plate.  In contrast, 

an impinging flow possesses strain but no vorticity within the stagnation zone, causing 𝐶�̃� to become different from 

𝐶𝜇 as seen and explained in the impinging flow example, Fig. (16).  

In principle, the damping function, 𝑓𝜇 , should vary as 1/y at the immediate vicinity of walls in order to enforce 𝜇𝑡~𝑦3. 

However, in the viscous sublayer 𝜇𝑡 ≪ 𝜇 and it is advantageous, in practice, to avoid the 1/y near-wall behavior. In the 

present work the damping function first introduced in (Goldberg & Apsley, 1997) is adopted: 

𝑓
𝜇

=
1 − 𝑒−𝐴𝜇𝑅𝑡

1 − 𝑒−√𝑅𝑡

𝑚𝑎𝑥 {1, √2 𝑅𝑡⁄ }                                                                                                                                          (5) 

where 𝑅𝑡 = 𝑞ℓ/𝜈 is the turbulence Reynolds number, serving the purpose of wall proximity indication, thus 

avoiding the need for physical wall distance (see flat plate results for Rt vs. Ry, Fig. 1). As explained in (Goldberg 

& Apsley, 1997), this form of 𝑓
𝜇
 has time-scale realizability built-in. 

The transport equation for 𝑞 ≡ √𝑘 is transformed from the one for the k equation as follows 

𝜌
𝐷𝑞

𝐷𝑡
=

𝜌

2𝑞

𝐷𝑘

𝐷𝑡
,  leading to 

𝜕(𝜌𝑞)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝑈𝑗𝜌𝑞) =
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇

𝑡

𝜎𝑞

)
𝜕𝑞

𝜕𝑥𝑗

] +
𝑃𝑘

2𝑞
− 𝜌

𝑞2

2ℓ
+

𝜇 + 𝜇
𝑡

𝜎𝑞⁄

𝑞

𝜕𝑞

𝜕𝑥𝑗

𝜕𝑞

𝜕𝑥𝑗

                                                    (6𝑎) 

However, numerical stability considerations indicate retaining only the molecular viscosity in the extra source term, 

leading to the final form 

𝜕(𝜌𝑞)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝑈𝑗𝜌𝑞) =
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇

𝑡

𝜎𝑞

)
𝜕𝑞

𝜕𝑥𝑗

] +
𝑃𝑘

2𝑞
− 𝜌

𝑞2

2ℓ
+

𝜇

𝑞

𝜕𝑞

𝜕𝑥𝑗

𝜕𝑞

𝜕𝑥𝑗

                                                                     (6𝑏) 

The exact transport equation for the length-scale is derived from the k- equations according to the transformation 

𝜌
𝐷ℓ

𝐷𝑡
=

ℓ2

𝑞3 𝜚 (
3

2

𝑞

ℓ

𝐷𝑘

𝐷𝑡
−

𝐷𝜀

𝐷𝑡
). Assuming 𝜎𝑘 = 𝜎ℓ this leads to 

𝜕(𝜌ℓ)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝑈𝑗𝜚ℓ)

=
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇

𝑡

𝜎ℓ

)
𝜕ℓ

𝜕𝑥𝑗

] + (
3

2
− 𝐶𝜀1)

ℓ

𝑘
𝑃𝑘 − (

3

2
− 𝐶𝜀2) 𝜚√𝑘

+ (𝜇 +
𝜇

𝑡

𝜎ℓ

) (
3

𝑘

𝜕ℓ

𝜕𝑥𝑗

𝜕𝑘

𝜕𝑥𝑗

−
2

ℓ

𝜕ℓ

𝜕𝑥𝑗

𝜕ℓ

𝜕𝑥𝑗

−
3ℓ

4𝑘2

𝜕𝑘

𝜕𝑥𝑗

𝜕𝑘

𝜕𝑥𝑗

)                                                                           (7) 

Pk is the turbulence production, −𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑈𝑖,𝑗 which, modeled in terms of the Boussinesq concept (Eq. 1), reduces 

to 

𝑃𝑘 = [𝜇
𝑡

(𝑈𝑖,𝑗 + 𝑈𝑗,𝑖 −
2

3
𝑈𝑘,𝑘𝛿𝑖𝑗) −

2

3
𝜌𝑞2𝛿i𝑗] 𝑈𝑖,𝑗                                                                     (8)                                                                                  

The constants appearing in the above transport equations are given later. 
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Three extra source/sink terms appear in Eq. 7 as a result of transforming the k- and - equations into the ℓ − equation. 

Analyzing these terms revealed the following. The 1st, a cross-product term, yields superior predictions of free shear 

flows due to its contribution to increased turbulent diffusion. However, it deteriorates the model’s performance in 

near-wall regions and must, therefore, not be active there. The 2nd extra sink term has an important contribution to the 

performance of the model but it must be retained in the near-wall zone only, otherwise reversal of normal-to-wall flow 

entrainment direction (which should point away from the wall) may occur, resulting in excessive sensitivity to 

freestream turbulence conditions. The 3rd extra sink term involves division by q4, rendering it numerically undesirable 

unless the near-wall grid is very fine. This term is, therefore, not used in the final version of the model. Thus, the final 

length-scale transport equation is given by 

𝜕(𝜌ℓ)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝑈𝑗𝜚ℓ) =
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎ℓ

)
𝜕ℓ

𝜕𝑥𝑗

] + (
3

2
− 𝑐𝜀1)

ℓ

𝑞2
𝑃𝑘 + (𝐶𝜀2 −

3

2
) 𝜚𝑞 +

6𝐶�̃�

𝜎ℓ

𝑚𝑖𝑛 {𝜌ℓ
𝜕ℓ

𝜕𝑥𝑗

𝜕𝑞

𝜕𝑥𝑗

, 0} −

Ψ                                                             (9a)                                                                                                                      

where  

Ψ = {

2𝐶�̃�

𝜎ℓ
𝜚𝑞

𝜕ℓ

𝜕𝑥𝑗

𝜕ℓ

𝜕𝑥𝑗
,   

𝜕ℓ

𝜕𝑥𝑗
 
𝜕(ℓ/𝑞)

𝜕𝑥𝑗
 > 0 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                                                       (9𝑏)    

Thus, in Eqs. (9), the 1
st
 extra sink term includes 𝑚𝑖𝑛{ℓ,𝑗𝑞,𝑗 , 0} to make sure that it is not invoked in the 

immediate vicinity of walls where ℓ,𝑗𝑞,𝑗
> 0, whereas the 2

nd
 extra sink term, , is active only near walls where  

𝜕ℓ

𝜕𝑥𝑗

 
𝜕(ℓ/𝑞)

𝜕𝑥𝑗

 > 0.  In spite of being active adjacent to walls, only the turbulent contribution is retained in ; not 

that of the molecular viscosity. It is also noted that (a) the variable 𝐶�̃� is invoked in both of these terms and (b) 

both ℓ,𝑗𝑞,𝑗
 and ℓ,𝑗(ℓ/𝑞),𝑗 are wall proximity indicators, changing sign from positive in the immediate wall 

neighborhood to negative further away from the wall. 

The two transport equations are subject to simple Dirichlet boundary conditions at solid walls. The kinetic energy 

of turbulence and its 1
st
 normal-to-wall derivative vanish. The former condition is implemented directly: 

𝑞
𝑤

= 0                                                                                                                                                                                         (10) 

and, since ℓ = 𝑘3 2⁄ 𝜀⁄  with 𝜀𝑤 finite,  

ℓ𝑤 = 0                                                                                                                                                                                         (11) 

As a wall is approached, Eq. (9a) reduces to  

𝜕2ℓ

𝜕𝑦2
= (

3

2
− 𝐶𝜀2)

𝑞

𝜈
                                                                                                                                                                  (12) 

where both terms are linear in y. In contrast, the corresponding balance in the  equation is 

𝜕2𝜀

𝜕𝑦2
=

𝐶𝜀2

𝐶𝜏

(
𝜀

𝜈
)

3 2⁄

                                                                                                                                                                     (13) 

which involves higher-order correlations since the near-wall variation of  with wall distance is nonlinear. This 

difference in near-wall behavior, the natural boundary condition for ℓ and the fact that q  y in the viscous sublayer are 

significant advantages of the q- ℓ closure over the k- model, leading to improved convergence characteristics. 

2.3 Model Constants 

The standard k- model constant 𝐶𝜀2 = 1.92 is retained, however 𝐶𝜀1 = 1.49 rather than the original value of 1.44. 

The value of 𝜎ℓ (𝑎𝑛𝑑 𝜎𝑞) is determined from evaluating Eq. (9a) at the logarithmic overlap region, leading to  
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𝜎ℓ = 𝜎𝑞 =
𝜅2

(𝐶𝜀2 − 𝐶𝜀1)√𝐶𝜇

= 1.3                                                                                                                                   (14𝑎) 

The remaining constant, appearing in the damping function 𝑓𝜇 (Eq. 5), is calibrated based on pipe, channel and flat 

plate flows, resulting in 𝐴𝜇 = 0.013. However, this choice of constants proves less than satisfactory regarding the 

model’s performance (labeled ‘test’, see the axisymmetric bump case for example, Fig. 18). Much improved prediction 

capability is enabled by adopting the constants 

𝜎ℓ = 𝜎𝑞 = 1.0, 𝐴𝜇 = 0.023.                                                                (14b) 

All results shown later have been produced with the constants in Eq. (14b). 

2.4 Isotropic Turbulence Decay 

In the absence of mean flow or turbulence gradients, Eqs. (6b) and (9) reduce to 

 
𝑑𝑞

𝑑𝑡
= −

𝑞2

2ℓ
                                                                                                                                                                             (15𝑎) 

 
𝑑ℓ

𝑑𝑡
= (𝐶𝜀2 −

3

2
) 𝑞                                                                                                                                                                (15𝑏) 

These indicate that q decays with time while ℓ increases but its rate of increase diminishes with time (𝑑2ℓ 𝑑𝑡2⁄ < 0). 

The solution to Eqs. (15) is 

 𝑞 𝑞
0

= [𝑓(𝑡)]𝐶𝑞⁄                                                         (16a)                                                                 

 ℓ ℓ0 =⁄ [𝑓(𝑡)]𝐶ℓ                                                                                                                                                                      (16𝑏) 

where 

𝑓(𝑡) =
ℓ0 𝑞0⁄

(𝐶𝜀2 − 1)𝑡 + ℓ0 𝑞0⁄
, 𝐶𝑞 =

1

2(𝐶𝜀2 − 1)
, 𝐶ℓ =

3 − 2𝐶𝜀2

2(𝐶𝜀2 − 1)
 

and the eddy viscosity decays as 

𝜇
𝑡

𝜇
𝑡0

=⁄ [𝑓(𝑡)]𝐶𝜈                                                                         (17)                                                                       

where 

𝐶𝜈 =
2 − 𝐶𝜀2

𝐶𝜀2 − 1
 

Here 𝑞0 and ℓ0 are the levels of q and ℓ at time t=0 and 𝜇𝑡0
= 𝐶𝜇𝜌𝑞0ℓ0. Since 𝐶𝜈 ≈ 0.087, eddy viscosity decay is 

relatively slow. This is also the decay rate of the k- model. It is noted that 𝐶𝜀1 has no influence on the model’s 

prediction of isotropic turbulence decay. 

3. Results 

In the following flow test cases the q-ℓ model’s performance is compared to experimental data as well as to predictions 

by the SST closure (Menter et al., 2003). Results include both wall-bounded and free shear flows, covering a wide range 

of Mach numbers. One 3D aerodynamic case is also included. 

All 2D cases were validated (some by NASA (cfl3d.larc.nasa.gov)) for grid independence and the 3D wing/fuselage test 

example already has an optimised mesh which was imported from the NASA data base (cfl3d.larc.nasa.gov). 

Verification and validation of CFD++, the employed commercial CFD solver (Chakravarthy, 1999), were published by 

NASA (Rumsey). 

3.1 Flat Plate 

As a fundamental test case, a Mach 0.2 flow over a flat plate at zero pressure gradient was computed on a 273x193 grid, 

provided by NASA (cfl3d.larc.nasa.gov) with an off-wall grid size of Δymin=6.0x10-8 m, providing a very fine y+ = 0.02. 
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The plate is 1 m long and the Reynolds number is Rex= 5x106 at x=0.305 m. Fig. 1(L) shows that SST underpredicts 

skin friction whereas q-ℓ follows the White correlation (White, 1974). It is noted that while SST predicts transition at 

the leading edge, q-ℓ does not.  

Fig. 1(R) demonstrates the near-wall monotonically increasing behavior of Rt vs. qy/, which enables the current model 

to eliminate the need for physical wall distance by using Rt as a wall proximity indicator. 

        
Figure 1. (L) Skin friction along plate, (R) Near-wall behavior of Rt 

3.2 Driver’s Separating Boundary Layer 

For this axisymmetric separated boundary layer case, experimental data are from (Driver, 1991) who utilized a cylinder of 

0.140 m diameter in a tunnel in which an adverse pressure gradient was imposed over a portion of the flow by diverging 

the four tunnel walls. Each wall was deflected by 0.045 m, resulting in an area expansion ratio of about 1.6. The tunnel 

sidewall boundary layers were thinned via suction. In the currently used experimental case, the adverse pressure gradient 

was strong enough for the flow on the cylinder to separate, resulting in a bubble of length 0.2m approximately. The 

experimentalist provided a streamline shape, well outside the cylinder's boundary layer, that can be used as an inviscid 

surface for defining the upper boundary condition in a CFD simulation. The inflow to the domain was adjusted so that the 

naturally developing turbulent boundary layer on the cylinder in the CFD solution grew to approximately 0.012 m thick 

near the position x = -0.3 m (just upstream of the adverse pressure gradient) as noted in (Driver, 1991). A short 

symmetrical region was imposed upstream to avoid possible incompatibilities between freestream inflow and wall 

boundary conditions. This axisymmetric case uses a wedge grid with periodic boundary conditions applied on its sides.  

See Fig. 2 for a summary of topological parameters and boundary conditions. Fig. 3 shows overall streamwise velocity 

contours while Fig. 4 concentrates on the separated flow region. Pressure and skin friction profiles are seen in Figs. 5. The 

q-ℓ model follows the Cp data closer than the SST closure does but separation and reattachment points are better 

predicted by the latter. Finally, Fig. 6 shows residual history of the q-ℓ computation. 
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Figure 2. Topology and boundary conditions (from NASA) 

 
Figure 3. Streamwise velocity contours 

 

Figure 4. Separated flow detail 
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Figure 5. Pressure (L) and skin friction (R) profiles 

 

Figure 6. Residuals history 

3.3 Buice-Eaton Diffuser 

This NASA (cfl3d.larc.nasa.gov) validation case examines separated flow in a 2D asymmetric diffuser. It is a good case 

for investigating CFD capability to predict the correct separation behavior on smooth walls with adverse pressure 

gradient. The M=0.06 inlet flow is two-dimensional and turbulent with a Reynolds number of 20,000 based on the 

centerline velocity and channel height, H. Fully-developed flow is guaranteed by using a long enough channel upstream 

of the diffuser’s start. Prediction of separation and reattachment points and the normal-to-wall extent of the recirculation 

zone in these types of problems is particularly challenging for CFD since neither separation nor reattachment point 

occurs at locations where topology changes. This flow has been experimentally studied by (Buice & Eaton, 2000) at 

Stanford University. Here numerical results are compared with experimental data of skin friction on both walls. Grid 

dimensions are 473 x 141 (Figure 7R). The x- and y-axes are set in the streamwise and straight-wall normal directions, 

respectively, with origin of the x-axis located at the intersection of the tangents to the straight and inclined walls (Fig. 

7L). The y-axis originates from the bottom wall of the downstream channel. Near-wall grid was clustered such that the 

average 1st centroidal’s y* 0.1, allowing for direct solve-to-wall. The height, H, of the inflow domain is 0.015m and 

the straight inflow region is 110H long. The lower wall of the diffuser section is at y = 0 and the section is 4.7H high 

and extends 56H downstream of the ramp. A comparison study of skin friction along the lower wall has been performed 

by NASA (Rumsey), concluding that the present fine grid is sufficient to capture the flow effects, especially in the 

diffuser region (x/H > 0). 

The initial flow conditions are those of the freestream as presented in Table 1. 
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Table 1. Static freestream conditions. 

Mach Pressure (N/m2) Temperature (K) Angle-of-Attack (deg) 

0.058 101139.2 294.4 0.0 

The bulk flow velocity, Ub, in the channel is 19.81 m/sec (used to compute Cf) and the upstream channel centerline 

inflow velocity is 1.14Ub (=22.59 m/sec). The static pressure is specified at the outflow BC (back-pressure) and was 

adjusted slightly in order to obtain the correct Ub just upstream of the diffuser. The final pressure value, using the SST 

model, is 101,139.2 N/m2. In principle, this back-pressure value needs modification in order to obtain the same bulk 

flow velocity as the one from the experiment just upstream of the diffuser, when changing turbulence model. However, 

such modification was not done here and the above value was kept independent of turbulence closure. Assuming a static 

inflow temperature and pressure for normal wind tunnel conditions and using the given Reynolds number of 20,000 and 

channel height H, the inlet Mach number of 0.058 (or equivalent flow velocity) was extrapolated and used to initialize 

the solution. From this, the bulk velocity just upstream of the diffuser was fine-tuned to match experimental conditions 

by slightly adjusting the back pressure (exit static pressure) while keeping the inflow static temperature as specified in 

Table 1 together with Uin=22.59 m/sec. In the present calculations, inflow turbulence levels were Tu=0.5% and 

𝜇𝑡/𝜇 = 30. Finally, both upper and lower walls were treated as adiabatic solve-to-wall surfaces. 

Fig. 8(L) shows streamwise velocity contours and Fig. 8(R) depicts the extent of the predicted separation bubble. It is 

observed that neither separation nor reattachment point occurs at a topological discontinuity, rendering this flow a 

challenging problem for CFD. Figures 9 compare predicted skin friction with experimental data. SST better predicts Cf 

on the upper wall whereas on the lower wall both models predict the separation point at the same location, upstream of 

the data, while SST captures the reattachment point and q-ℓ predicts it marginally more upstream. Residuals history is 

seen in Fig. 10, indicating convergence in less than a hundred steps using the q-ℓ model. 

 

Figure 7. (L) Geometry details (NASA), (R) Mesh detail 

 

 

 

 

Figure 8. (L) Streamwise velocity contours, (R) Separated flow region 
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Figure 9. Skin friction profiles: (L) Upper wall (R) Lower wall 

 

Figure 10. Residual history 

3.4 Sudden Pipe Expansion 

(Baughn et al., 1989) performed flow measurements in a sudden expansion between two circular tubes (Fig. 11U). Flow 

conditions are: Me=0.0078, ReD=17,300 (based on the larger tube diameter) and Te=288 K. The calculations were 

performed subject to the following inflow turbulence levels: Tu=0.8%, ℓT=2.3 mm. The 2-meter-long upstream tube is 

insulated while the downstream one is kept at a uniform wall temperature TW=298 K. Figures 11 show geometry and 

main flow features, in particular the recirculation region downstream of the expansion (see Fig. 11D) The pipe boundary 

layer was allowed to develop from the constant inflow conditions. Solve-to-wall calculations were performed on the 

21,000 cell mesh with y* < 0.6 at the heated pipe wall. Fig. 12(L) shows the separation zone and figure 12(R) shows 

comparisons of prediction with experimental data of wall heat transfer in Nusselt number form. The q-ℓ model is 

observed to capture the data very closely, including accurate prediction of the peak heat transfer level which SST 

overpredicts by 60%.  Lastly, residual histories are seen in Fig. 13. Due to , the SST model required 1000 steps to 

converge whereas q-ℓ converged in 200 steps. 
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Figure 11. (U) Sketch of geometry, (D) Flow details 

 

Figure 12. (L) Negative velocity contours, (R) Heat transfer profiles 
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Figure 13. Residual histories. (U) q-ℓ, (D) SST 

3.5 Impinging Flow 

A turbulent jet from a pipe, ending 2 diameters ahead of an isothermally heated plate, impinges on the plate. The shear 

layer from the pipe wall forms the outer boundary of this jet. As it impinges on the plate, the turbulent shear layer hits 

the newly developing plate boundary layer about 2 pipe diameters away from the stagnation point, where a secondary 

peak in heat transfer occurs due to the local increase in turbulence intensity (see figure 14L). The case for air at 

ReD=23,000 was computed on a 117,000 size grid. Near-wall mesh was fine enough (y+ < 1) and sufficiently dense to 

integrate the equations to walls. Flow conditions are: p=105 Pa, T=293 K, Tw=314.9 K and D=0.0403 m. Figure 14(L) is 

a sketch showing topology and main flow features and Fig. 14(R) shows the mesh. To predict this flow, a 50 diameter 

long adiabatic wall pipe was used to insure that the flow becomes fully developed before the pipe end is reached. The 

far-field boundaries allowed inflow or outflow and imposed the specified ambient pressure. Computations were 

performed with 1% turbulence intensity at the pipe entrance and a turbulence length-scale of 1.6 cm, applied in both 

models. Figure 15(U) shows velocity magnitude contours where the boundary layer on the vertical plate is observed to 

develop downstream of the stagnation region. Figure 15(D) compares heat transfer predictions (in terms of Nusselt 

Number) along the vertical heated plate with experimental data by (Baughn et al., 1991) and (Yan et al., 1992). The q-ℓ 

closure correctly predicts the peak level (but not the location) of the 2nd increase in heat transfer due to the turbulent jet 

impingement, thanks to the variable 𝐶�̃�; the SST model fails to predict this feature.  𝐶�̃� along the symmetry line in 
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shown in Fig. 16(L). While the flow is not fully developed along the pipe, 𝐶�̃� 𝐶𝜇 < 1⁄  but once fully developed,  

𝐶�̃� 𝐶𝜇 ≅ 1⁄ . As the stagnation point is approached (0), 𝐶�̃� 𝐶𝜇 ≈ 𝐵𝑆̅ (𝐶𝜇𝑆̅𝐴)⁄ = 𝐵 (𝐶𝜇𝑆̅𝐴−1)⁄ ≪ 1⁄  but immediately 

reaches 1 at the impingement point where 𝑆 = 𝜕𝑈 𝜕𝑥 → 0⁄ . 

Both models converged more than 5 orders of magnitude, as seen in Fig. 16(R) for q-ℓ. 

 

Figure 14. (L) Sketch of geometry and flow features, (R) grid 

 

Figure 15. (U) Velocity magnitude contours, (D) Heat transfer profiles along vertical wall 
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Figure 16. (L) Variable Cμ,  (R) Residuals history 

3.6 Transonic Flow over an Axisymmetric Bump (Bachalo & Johnson, 1979) 

Figure 17 shows geometry and main flow features of this case. A normal shock, interacting with the boundary layer, 

causes flow detachment over the bump, at x/c ≈ 0.7, with subsequent reattachment on the downstream cylindrical 

portion. Inflow conditions are: M∞=0.875, Re∞,=1.36x107 at x=1m, p∞=57,935 Pa, T∞=255.6 K, Tu=1% and μt/μ=20. 

The turbulence models were used on a 12,000 cell grid with y+ ≤ 1 to permit direct solution to the wall. Figure 18(L) 

shows Mach contours where the normal shock is observed. Fig. 18(R) compares wall pressure prediction with data, 

showing accurate capture of shock location by both turbulence closures, yet a marginally better shock capture is 

predicted by the q-ℓ model. This figure includes a result with the ‘test’ q-ℓ version (𝜎𝑞 = 𝜎ℓ = 1.3, 𝐴𝜇 = 0.013) 

mentioned earlier. Evidently the result is inferior to the proposed version (𝜎𝑞 = 𝜎ℓ = 1.0, 𝐴𝜇 = 0.023).   

Figure 19 shows residual history. 18 orders of magnitude reduction in residuals were achieved by both models. 

 

Figure 17. Geometry and main flow features 
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Figure 18. (L) Mach contours, (R) Surface pressure profiles 

 
Figure 19. Residuals history 

3.7 RAE2822 Airfoil in Transonic Flow 

This case (Cook et al., 1979) involves a normal shock at approximately the 60% chord location. Wind-tunnel corrected 

flow conditions are: M∞=0.734, Rec=6.5x106 and α=2.79o. The computations were performed on a 7000 triangular cell 

grid with a typical y+=44 off the airfoil and a growth ratio of 1.5 (see figures 20). A wall function approach (Launder, 

1988) was used due to the near-wall grid resolution. The two turbulence models were applied with the following 

freestream conditions: Tu=0.5% and 𝜇𝑡 𝜇 = 30⁄ . Figure 21(L) shows the transonic shock as predicted by both models. 

Figure 21(R) shows Cp profiles, indicating that the shock location is captured by both models. Residual history from the 

q-ℓ computation is seen in Fig. 22. 
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Figure 20. (L) Triangular mesh, (R) Near-wall grid detail 

 

Figure 21. (L) Mach contours (shock at x/c ~ 0.6), (R) Surface pressure profiles 

 

Figure 22. Residuals history 

3.8 Transonic Diffuser 

(Mohler, 2005) describes a 2D transonic diffuser test case in which a subsonic inflow accelerates to supersonic levels 

within a nozzle-like geometry, then shocks down to subsonic flow in the diverging (diffuser) portion. The shock causes 

flow separation on the curved (top) wall with consequent reattachment upstream of the exit. Figure 23 shows geometry 

and mesh. Fig. 24(U) shows Mach contours where the shock and separation bubble downstream of it are seen. Fig. 24(D) 

shows negative streamwise velocity contours, depicting the separation bubble. 

Flow conditions: po,in=134.4 kPa, To,in=277.8 K, pout=97.2 kPa, Tu=0.5%, μt/μ=50.  

This case was run on a 21,000 cell mesh with y+ ≤ 0.2 on both walls to permit direct solution to the wall.  

Figures 25 compare pressure predictions along both walls with experimental data, showing accurate capture of the 

measured data, including shock locations, by both models. Here h* is the throat height.  
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Figure 23. Mesh 

 
Figure 24. (U) Mach contours showing shock, (D) Separated flow contours 

 

Figure 25. Surface pressure. (L) Upper wall, (R) Lower wall 

3.9 Mach 0.6 Jet 

A subsonic axisymmetric jet, emanating from a convergent nozzle, expands into still air. The nozzle diameter at exit is 

D=6.2 cm and the jet inflow profiles at x=x0 (start of jet) are those of a fully developed turbulent flow with Pj=1 Atm, 

Tj=288 K, Umax=211.2 m/s, μt/μ=10 and Tu=2.4%. The calculation was done using a 36,000 cell grid. Experimental 

data were taken form (Wygnanski & Fiedler, 1969).  

Figure 26(U) shows the mesh, including both nozzle and jet regions. Figure 26(D) is a Mach contour plot, showing the 

subsonic jet in some detail. Figure 27(L) compares the centerline velocity profile with data. The q-ℓ model predicts an 

over-extended jet core length but also better agreement with data further along the jet. The SST model predicts the jet 

core correctly but develops too large an eddy viscosity field further downstream, causing underprediction of the data. 

Finally, figure 27(R) is the residual history of the computation with the q-ℓ model. The SST closure calculation took 

twice as many steps to converge.  
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Figure 26. (U) Geometry and mesh, (D) Mach contours 

 
Figure 27. (L) Centerline velocity profiles, (R) q-ℓ Residuals history 

3.10 Reattaching Supersonic Shear Layer 

(Samimy et al., 1986) report experimental results from a supersonic turbulent reattaching shear layer onto a slanted 

ramp (see Figures 28 for topology). Freestream conditions are: M
∞

=2.46, Re
∞

=5x107/m, p
o

=528.1 kPa and T
o

=297 K. 

An inflow boundary layer with δ=3.12 mm was imposed on both walls. A 52,500 cell grid was used for the calculation 

with y+≤ 0.3 and a small growth rate of 1.15 to enable direct solution to walls. The turbulence models were invoked 

subject to Tu=1% and ℓ
T

=3 mm at inflow.  

Figure 28(R) shows Mach contours where the reattaching shear layer and recompression shock are clearly seen. Figure 

29(L) shows negative streamwise velocity contours, indicating that shear layer reattachment is predicted by the q-ℓ 

model at x≈140 mm, about 7.5% further downstream than indicated by measurements. The corresponding numbers for 

SST are x=138 mm, 6% downstream of the data. Figure 29 (R) compares predicted lower wall pressure distribution 

with the data, showing that the two predictions are practically identical and follow the measurements. Fig. 30 shows 

residuals history with the q-ℓ model computation. 
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Figure 28. (L) mesh, (R) Mach contours showing shear layer 

 

Figure 29. (L) Separated flow velocity contours, (R) Lower wall pressure profiles 

 

Figure 30. Residual history with q-ℓ 

3.11 Flow over Hump 

Turbulent flow separation over a hump was studied numerically and experimentally (Chuan et al., 2007), this being a 

canonical turbulent separated flowfield case. The hump is the upper surface of a modified Glauert airfoil which consists 

of a relatively long fore-body and a short separation ramp at the trailing edge (Figure 31(U). This shape was selected 

because the separation location is insensitive to Reynolds number and detailed experimental data are well-documented 

in the literature (Chuan et al., 2007). The hump has a physical chord length of c = 420 mm and a maximum height of 

53.7 mm. The inlet is located at x/c = −6.39 where the freestream Mach number is set to be 0.1 (U∞ = 34.6 m/s). The 

outlet is located at x/c = 4.0 where the pressure is set to p/p∞ = 0.99962. The flat top-wall is located at y/c = 0.9. 

Non-slip conditions were applied at the top-wall, floor and hump surface. 

The computation was done on a 208,000 cell grid with y+≤ 0.5 over the hump wall and a growth rate of 1.01, permitting 

direct solve-to-wall. A portion of the grid is shown in Fig. 31(D). 

The turbulence closures were used subject to the following inflow conditions: Tu=0.5% and μt/μ=20.  
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Fig. 32(L) shows the separated flow bubble and Fig. 32(R) is a plot of residual history by the q-ℓ model. 

Figures 33 show surface pressure and skin friction predictions along the hump. Both models over-predict the separation 

bubble extent, more so by the q-ℓ closure. The pressure prediction, Fig. 33(L), is done well by both models down to 

x=0.4 m, deteriorating further downstream due to the overprediction of the separation bubble size. 

 

Figure 31. (U) Hump topology, (D) Mesh detail 

 
Figure32. (L) Separated flow contours, (R) Residuals plot 

 

Figure 33. (L) Pressure profiles, (R) Skin friction profiles 

3.12 ARA M100 Wing/Body 

This wing/body test case (Peigin & Epstein, 2004) is at α= 2.870, M∞=0.803 and aerodynamic chord Reynolds number 
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Rec = 13.1x106. The mesh (cfl3d.larc.nasa.gov) has 860,000 cells with an off-wall y+ distribution as follows:  

y+
wing=0.8, 0.1≤ y+

fuselage≤ 30. Consequently, a wall function (Launder, 1988) was used over the fuselage and direct 

solve-to-wall was employed on the wing where the grid growth rate is 1.09. Freestream turbulence levels were Tu=0.5% 

and µt/µ=25. Figure 34 shows pressure contours on the fuselage and upper wing surface. The normal shock footprint on 

the wing’s suction side is observed. Figure 35(U) is that of a wing slice at =0.455, showing the normal shock and its 

interaction with the turbulent boundary layer. Fig. 35(D) provides a clear picture of the shock foot along the wing span 

by showing surface pressure contours. Cp profiles at two wing sections are seen in figures 36. Comparisons with 

experimental data show that the shock location, predicted by the q-ℓ model at =0.455, is closer to the data than that by 

the SST closure but the opposite prevails at =0.935 (close to the wing tip).  Finally, Fig. 37 shows the residuals 

history from the q-ℓ calculation. 

 
Figure 34. Topology and pressure contours showing shock along wing 

 

Figure 35. (U) Wing section Mach contours showing shock and flow separation, (D) wing suction side pressure 

contours showing shock foot along wing span  
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Figure 36. Pressure profiles. (L) at =0.455, (R) at =0.935 

 
Figure 37. Residual history 

4. Summary and Conclusions 

A two-equation √𝑘 − ℓ  turbulence model was introduced and tested. The model does not involve topological 

parameters like wall distance, instead it resorts to a number of local wall proximity indicators, an important benefit for 

engineering purposes. While the model is linear, it incorporates a variable 𝐶�̃� coefficient which sensitizes it to flows 

involving non-simple shear such as impingement or stagnation zones. Both model variables are subject to simple 

Diriclet wall boundary conditions and q is linear across the viscous sublayer, rendering the closure numerically robust 

and forgiving less than ideal near-wall grid concentration (as long as enough mesh exists to capture the turbulent 

near-wall behavior).  

The q- ℓ model was tested on a wide variety of flows, including low and high speed, internal and external, 2D and 3D. 

Compared to predictions by the SST closure (which requires wall distance), q- ℓ performs better in cases involving 

impinging or semi-stagnating flows (as in the pipe sudden expansion flow at reattachment) but may overpredict 

separation bubble extents in some low-speed flows. In both internal and external transonic flows the two models’ 

predictions are close.  

Fluids engineers whose work involves complex 3D topologies, particularly for non-stationary grids which require 

re-computing wall distance arrays at each time-step, may appreciate the fact that no distance arrays are needed for the 

q- ℓ model. 
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