Profitability of Improved Seed Adoption on Small Holders Maize Farmers in Abuja Nigeria

Ndem Chijioke¹ & Uteh Akaninyene¹

¹National Agricultural Seed Council Abuja, Nigeria
Correspondence: Ndemb Chijioke, National Agricultural Seed Council Abuja, Nigeria.

Received: September 3, 2018 Accepted: December 31, 2018 Online Published: January 2, 2019
doi:10.11114/bms.v4i4.3922 URL: https://doi.org/10.11114/bms.v4i4.3922

Abstract

The study analysed the profitability of improved seed adoption on the profitability and technical efficiency of smallholder maize farmers in Abuja, Nigeria. Descriptive statistics were used to describe the socioeconomic characteristics, gross margin analysis was used to determine the costs and returns of maize production. The t-test was used to compare the yield of improved maize seed adopters and non-adopters. The logit regression was used to analyse the determinants of adoption. The stochastic production frontier model was used to determine the technical efficiency of IMV. The results revealed that the average age of respondents (adopters and non-adopters) was 48 years and 39 years, respectively. Furthermore, 56% and 66% were male, 75% and 93% were married with average household size of 6 and 7 persons, respectively, and majority had formal education. Adopters had a mean farm size of 1.95 ha, while non-adopters had a mean farm size of 1.76 ha. The gross margin analysis result showed the profitability index for IMV and local seed were 0.66 and 0.41, respectively. The t-test result showed that IMV had higher yield per hectare (2,713.66kg/ha) compared to local maize variety (1,281.33kg/ha). The result of maximum likelihood estimate showed that the mean technical efficiency was 0.56 and 0.49 for adopters and non-adopters, respectively. The study revealed that adopters of improved maize seed varieties earned higher profits and were more technically efficient than non-adopters. It recommended the strengthening of extension services to enhance adoption through awareness by government. Farmers should form cooperatives to enable resourceful negotiation for inputs. Also, an improvement in the research and development of high quality improved maize varieties should be encouraged.

Keywords: profitability, improved seed, adoption, maize

1. Introduction

Maize (Zea mays, L.) is one of the main cereal crops of West Africa. It is the fourth most consumed cereal during the past two decades, after sorghum, millet and rice in Nigeria (Food and Agriculture Organization Statistics, 2012). Nigeria is the 11th largest producer of maize in the world, and the 2nd largest maize producer in Africa after South Africa (FAO Statistics, 2012). As a versatile crop that is not just consumed domestically, maize is used industrially by flour millers, brewers, bakers of bread and confectionery and animal feed manufacturers.

Maize is becoming a miracle seed of Nigeria’s agricultural and economic development. It has established itself as a very significant component of the farming system and determines the cropping pattern of the predominantly poor farmers, especially in the northern states in Nigeria (Ahmed, 1996). Maize is well-known as one of major cereal crops grown and consumed across all agro ecological zones of Nigeria. It has attained the highest growth rate of the major crops since the 1970s (Kamara, Kureh, Menkir, Kartung, Tarfa, and Amaza, 2006). The introduction of hybrid varieties resulted in accelerated growth in the mid-1990s, following the injection of extra-early varieties (Abate, Onyibe, Ado, Fajemisin, Menkir, Abdoulaye, and Badu-Abrahu, 2014).

Oyelade and Anwanane (2013) noted that maize is a cereal crop with the highest yield potential with an annual growth rate of 4.2% compared to 2.3% and 1.9% for sorghum and millet, respectively. It is important for the nourishment of both man and animals. Maize currently occupies the largest area of land cultivated followed by sorghum, cassava, millet, cowpea, yam, rice and groundnut (NBS, 2012). About 70% of the maize producers are small-scale farmers, cultivating between 0.5-2.0 hectares with low technology (Oyelade and Anwanane, 2013).

Seeds are basic agricultural input. Palmer (2005) noted that quality seeds of any preferred varieties are the basis for improved agricultural productivity. Quality seeds respond to farmers’ need to increase productivity and other crop uses.
The use of improved quality crop cultivars for profitable farming experienced by farmers has been recognized as the most important strategy in boosting agricultural production and accelerating achievement of National Food Security Programme (Ruma, 2008).

Improved quality seed is not only the economical and basic input of increasing yield but also fundamental in raising the efficiency of other inputs like fertilizers and agro-chemicals (Shobowale, 1994). Improved maize variety (IMV) has the capacity to improve yield, income and productivity of farmers. In essence, no agricultural practice for instance fertilizer application and irrigation can improve crop production beyond the limit set by seed (Alliance for a Greener Revolution in Africa (AGRA) and National Agricultural Seed Council (NASC), 2008).

Objectives of the Study:

This paper aims at looking into the key factors propelling economic benefits of improved maize seed production in FCT, Abuja, Nigeria. The objective of the study, therefore are to:

1. Examine the factors affecting the production of improved maize seeds in FCT, Abuja
2. Propose management measures to know the difference between the yield of improved maize seed adopters and non-adopters?
3. Identifying and analysing the costs and returns of improved maize seed adopters compared with non-adopters?

2. Review of Literature

Maize is the most important cereal food crop in sub-Saharan Africa (SSA) with more than 50% of all countries assigning over 50% of their cereal crop production area to maize. Over 650 million people in SSA consume on average 43 kg of maize/year (FAOSTAT, 2006). In Nigeria, for instance, maize is one of the two major crops that occupy about 40% of the land area under agricultural production, and accounts for about 43% of the maize grown in West Africa (Smith, Weber, Manyong and Fakorede 1997; Phillip, 2001). The total land area planted by small scale maize farmers in West and Central Africa increased from 3.2 million in 1961 to 8.9 million in 2005 (FAO, 2005).

Maize is high yielding, easy to process, readily digested, and cheaper than other cereals. It is also a versatile crop growing across a range of agro-ecological zones. Every part of the maize plant has economic value: the grain, leaves, stalk, tassel, and cob can all be used to produce a large variety of food and non-food products. According to IITA (2001) report, maize contains 80 per cent carbohydrate, 10 per cent protein, 3.5 per cent fiber and 2 per cent mineral. Iron and Vitamin B are also present in maize. Among different income groups, maize is a relatively more important source of both calories and protein for the poorer proportion of consumers, including HIV/AIDS affected families, who cannot afford more expensive foods, such as bread, milk or meat (Byerlee and Heisey, 1997). Maize production, therefore, is of strategic importance for food security and the socioeconomic stability of the country.

In industrialized countries, maize is largely used as livestock feed and as a raw material for industrial products, while in low-income countries, it is mainly used for human consumption (IITA, 2001). Although maize is increasingly being utilized for livestock feed, it is still a very important staple food for millions of Nigerians. Maize alone contributes about 80% of poultry feed and this has a great implication for protein intake in Nigeria (FAO, 2008). Maize is therefore, considered a very vital food crop to the economic growth of the nation through its contribution to food security and poverty alleviation. In order to satisfy specific consumer preferences, the varieties developed are varied in grain colour (mainly white and yellow) and endosperm characteristics (dent, flint, floury and varying grades between the three). Flint maize is relished as green maize whereas the dent varieties have starch content preferably with minimal chaff and therefore suitable for food dishes such as Ogi and Tuwo.

3. Methods

Database and Sample Size:

Multi-stage random sampling technique was employed to select a target sample of 300 maize farmers for the study. There are six (6) Area Councils in the FCT namely; Abaji, Kuje, Gwagwalada, Kwali, Bwari and the FCT Municipal. In the first stage, four (4) Area Councils; Bwari, Gwagwalada, Kuje and Kwali were selected purposively based on the preponderance of maize farmers in these Area Councils. The second stage of the procedure involved purposive selection of five maize producing villages from each of the selected Area Councils. The third stage involved a simple random selection of equal number of improved maize seed adopters and non-adopters from each of the selected villages. The formula used in selecting sample size proportionate to the population of maize farmers in each Area Council is Steven’s (1993) formula expressed as:

\[nh = \frac{nN_h}{N} \]

(1)
Where: nh= sample size that was determined, n= targeted number of respondents (n=300), Nh= sampling frame (total number of farming households in each Area Council), N=finite population (total population of farming households in the study area).

Table 1 presents the total number of maize farmers from the selected Area Councils used for the study. Applying the formula in equation 8, sample size of 62, 100, 66 and 72 respondents were selected and interviewed in Bwari, Gwagwalada, Kuje, and Kwali Area Councils, respectively.

Table 1. Number of maize farmers in selected Area Councils

<table>
<thead>
<tr>
<th>Area Councils</th>
<th>Sampling Frame</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bwari</td>
<td>1965</td>
<td>62</td>
</tr>
<tr>
<td>Gwagwalada</td>
<td>2975</td>
<td>100</td>
</tr>
<tr>
<td>Kuje</td>
<td>2115</td>
<td>66</td>
</tr>
<tr>
<td>Kwali</td>
<td>2335</td>
<td>72</td>
</tr>
<tr>
<td>Total</td>
<td>9390</td>
<td>300</td>
</tr>
</tbody>
</table>

Source: Agricultural Development Programme (ADP) Office, FCT (2015)

Method of Data Collection:
The study used primary data. Data were collected on socio-economic characteristics of the respondents such as age, gender, marital status, household size, educational status, extension contact, farming experience, farming status, labour source and income. Production information collected include farm size, land, labour, fertilizer and yields. Also, information on variety of IMV, sources of IMV, awareness and duration of awareness were collected. Farmers that adopted improved maize varieties were able to identify these varieties used by the names attached on the package. The respondents interviewed were able to identify the type of Four enumerators were engaged to administer the questionnaire by personal interview. The period of data collection was August-November, 2015.

Analytical Techniques:
The following were the various analytical tools that were used to achieve the objectives stated for this study: descriptive statistics, gross margin analysis, stochastic production frontier and multinomial logit regression.

4. Results

4.1 Examine the Factors Affecting the Production of Improved Maize Seeds in FCT, Abuja-Determinants of Adoption of Improved Maize Varieties (Imvs)

The binary logit regression was used to obtain the determinants of adoption of IMV by regressing adoption against farmer specific characteristics such as age, level of formal education, non-farm income, household size, farm income, farming experience and institutional factors such as extension contact and farm size. The results presented in Table 4.6 shows that the coefficient of age (0.098), educational status (0.120), non-farm income (-7.99e-06), household size (-0.376), farm income (6.47e-06) and labour (0.049) were statistically significant at 1% probability level. Extension contact (0.227) and farm size (-0.602) were statistically significant at 5% while farming experience (-0.037) was significant at 10% level of probability.

Coefficient of age (0.098) had a positive sign which indicates that the level to which a maize farmer adopts improved seed increases with age. Age of farmer is often linked with experience and ability to improvise techniques. As a farmer advances in age, his ability to identify specific challenges affecting his enterprise develops. Adesina and Baidu-Forson (1995) argued that older farmers have more experience in crop production and exposure to the potentials in modern technology than younger farmers. However, Cavane and Subedi (2009) asserted that age is one of the human resources that has been frequently associated with non-adoption of IMV among smallholder farmers in developing countries.

The positive sign of educational status shows that adoption level increases as farmers acquire formal education. Farmer’s ability to accept improved technology will likely prevail where there is greater access to formal education at all levels. This implies that increased formal education could lead to increased technical efficiency for the farmers. Education might be regarded as a factor for increased efficiency among farmers (Dimelu, Okoye, Okoye, Agwu, Aniedu and Akinpela, 2009; Simonyan, 2010). Similarly, Awe (1999) observed that literacy level influence farmers’ ability to adopt improved technology in south west Nigeria.
Non-farm income had a positive sign and was statistically significant at 5% level of probability. This implies that as non-farm income increases, farmers still adopt and continue to use improved maize varieties because of the additional income at their disposal and due to the accrued benefits attached to planting these improved varieties which could lead to increased productivity. Coefficient of household size had negative sign and was statistically significant at 1% probability level. This implies that as household size increases, level of adoption diminishes. This is in line with the finding of Bamire, Fabiyi and Manyong, (2002) that family size has been recognized to play a vital role in the adoption of any technology or farm practice. This may well be attributed to the cost of acquiring new farm technology where a farmer’s focus is household survival. Other factors could be accessibility and usage of improved technology.

Coefficient of farming experience had negative sign and significant at 10%. This indicates that an increase in the variable will result in less adoption of improved maize variety. This is against the expectation that farming experience leads to better understanding and utilization of improved technologies (Zanu, Antwiwaa and Agyemang, 2012). It is also expected that experienced farmers may be able to understand the nature of risk associated with each of the technologies, having adopted or seen some of them used over time.

4.2 Propose Management Measures to Know the Difference Between the Yield of Improved Maize Seed Adopters and Non-Adopters

T-test was used to compare the yield of improved maize seed adopters and non-adopters in the study area. The results showed an average of 2,713.66kg/ha and 1,281.33kg/ha for adopters and non-adopters, respectively. This indicates that the yield of IMV was more than two times the yield of local variety in the study area, with standard deviation of 6.13E-09. This finding is in line with apriori expectation that there is a significant difference between the yield of IMV and local variety.

Test of hypothesis of the study:
The null hypothesis (H₀) which states that there is no significant difference in the maize yields of adopters and non-adopters of improved seeds was tested using a t-test and the result presented in table 2. The calculated t-value was 6.8 and exceeds the critical value of 1.96, therefore the (H₀) is rejected at 5% level of probability. The result indicates that adopting improved maize seed varieties is more profitable than local varieties.

Table 2. T-test for yield of adopters and non-adopters

<table>
<thead>
<tr>
<th>Variables</th>
<th>Adopters</th>
<th>Non-adopters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>2713.66</td>
<td>1281.33</td>
</tr>
<tr>
<td>Variance</td>
<td>8010936.13</td>
<td>951259.9553</td>
</tr>
<tr>
<td>Observations</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Poooled Variance</td>
<td>4481098.043</td>
<td></td>
</tr>
<tr>
<td>Hypothesized Mean Difference</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>298</td>
<td></td>
</tr>
<tr>
<td>t Stat</td>
<td>-5.859796144</td>
<td></td>
</tr>
<tr>
<td>P(T<=t) one-tail</td>
<td>6.13102E-09</td>
<td></td>
</tr>
<tr>
<td>t Critical one-tail</td>
<td>1.649982976</td>
<td></td>
</tr>
<tr>
<td>P(T<=t) two-tail</td>
<td>1.2262E-08</td>
<td></td>
</tr>
<tr>
<td>T Critical two-tailed</td>
<td>1.967956506***</td>
<td></td>
</tr>
<tr>
<td>T Calculated</td>
<td>6.8</td>
<td></td>
</tr>
</tbody>
</table>

Source: Field survey (2015)

Note: * = significant at 10%, ** = significant at 5%, *** = significant at 1%.

4.3 Identifying and Analysing the Costs and Returns of Improved Maize Seed Adopters Compared With Non-Adopters

Costs and returns of adopters and non-adopters of IMV in the study area are presented in Table 4.7. Financial analysis was carried out to ascertain the economic potentials of using both varieties of maize.

Results presented in the table show that cost of hired labour for adopters and non-adopters were 42.15% and 40.62%, respectively, of the total cost, while family labour accounted for 13.20% and 26.15% for adopters and adopters, respectively. The cost of fertilizers for adopters and non-adopters accounted for 14.52% and 7.37% respectively, while the cost of agrochemicals accounted for 4.85% and 5.33%, respectively. This implies that labour, fertilizer and agrochemicals were vital inputs in maize production in the study area. This is line with the findings of Akanbi, Omotesho and Ayinde (2011) who stated that fertilizer, labour and agrochemical were parts of the most important inputs in crop production in Nigeria. It is noteworthy that adopters spent more on agrochemicals than non-adopters due to the expected returns on use of improved maize variety (Ugwumba and Omojola, 2012).

The table further reveals that the variable cost for adopters constituted 92.12% of the total cost which is lower than that of non-adopters (95.83%). This implies that adopters spent more in their farm operation. The total revenue generated
per hectare were ₦198, 711.80 and ₦101, 841.29 for adopters and non-adopters, respectively. The higher revenue derived from adopters is attributed to the higher yield levels of IMV per hectare compared with local varieties (Amaza et al., 2008).

Gross margin (GM) analysis was used to compare the performance and profitability of each of the two enterprise (adopters and non-adopters). Table 4.7 shows the gross margin of ₦136, 670.53 per hectare for adopters while ₦44, 275.11 per hectare for non-adopters. This implies that adopters of improved maize seed varieties earned more profit than non-adopters in the study area. In other words, adoption of improved technology helps the farmers to generate more income from their enterprise (Amaza et al., 2008).

Table 3 shows the gross ratios of 0.339 and 0.590 for adopters and non-adopters of improved maize seed varieties, respectively. This indicates that the total costs of production is about 33% of the gross income for adopters and 59% of the gross income for non-adopters respectively. This shows that farms that adopted improved maize seeds were more financially efficient than non-adopters.

Table 3 also shows the operating ratios of 0.312 and 0.565 for adopters and non-adopters, respectively. This indicates that 31% of the gross income was used to pay for the variable costs for the adopters, while 57% of the gross income was used to pay for the variable cost for non-adopters. The operating cost is directly related to the variable input usage. The lower the value of the operating ratio, the better the financial position of the farm. An operating ratio of one means that the gross income scarcely covers the expenses on the variable inputs used on the farm. It can be deduced from the result that maize farmers should be encouraged to use improved maize seeds for their farm operation.

The return on capital invested in Table 3 shows 1.95% and 0.70% for adopters and non-adopters respectively. This implies that for every ₦1 invested by adopters and non-adopters, 95kobo and 70kobo was realized as profit, respectively. The result shows that using improved maize seed varieties was more profitable than using local varieties in the study area.

Table 3. Costs and returns analysis in maize production

<table>
<thead>
<tr>
<th>Cost of items</th>
<th>Adopters</th>
<th>%</th>
<th>Non Adopters</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount</td>
<td>%</td>
<td>Amount</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>(₦/ha)</td>
<td></td>
<td>(₦/ha)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of seeds</td>
<td>3018.96</td>
<td>4.48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Family labour</td>
<td>8887.96</td>
<td>13.20</td>
<td>15707.41</td>
<td>26.15</td>
</tr>
<tr>
<td>Hired labour</td>
<td>28385.40</td>
<td>42.15</td>
<td>24401.09</td>
<td>40.62</td>
</tr>
<tr>
<td>Cost of agrochemicals</td>
<td>3265.34</td>
<td>4.85</td>
<td>3202.14</td>
<td>5.33</td>
</tr>
<tr>
<td>Cost of fertilizer</td>
<td>9777.63</td>
<td>14.52</td>
<td>4427.79</td>
<td>7.37</td>
</tr>
<tr>
<td>Consultancy services</td>
<td>44.34</td>
<td>0.07</td>
<td>3.76</td>
<td>0.01</td>
</tr>
<tr>
<td>Salaries of staff</td>
<td>590.04</td>
<td>0.88</td>
<td>94.02</td>
<td>0.16</td>
</tr>
<tr>
<td>Cost of repairs</td>
<td>311.08</td>
<td>0.46</td>
<td>271.12</td>
<td>0.45</td>
</tr>
<tr>
<td>Transportation</td>
<td>4454.98</td>
<td>6.61</td>
<td>5169.24</td>
<td>8.61</td>
</tr>
<tr>
<td>Loading and offloading cost</td>
<td>1056</td>
<td>1.57</td>
<td>680.73</td>
<td>1.13</td>
</tr>
<tr>
<td>Processing and preservation</td>
<td>2249.52</td>
<td>3.34</td>
<td>3608.86</td>
<td>6.01</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total variable costs</td>
<td>62041.27</td>
<td>92.12</td>
<td>57566.18</td>
<td>95.83</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciation on fixed costs</td>
<td>5307.60</td>
<td>7.88</td>
<td>2504.78</td>
<td>4.17</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total costs = (B+C)</td>
<td>67348.87</td>
<td>100.00</td>
<td>60070.96</td>
<td>100.00</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total revenue (G)</td>
<td>198711.80</td>
<td>101841.29</td>
<td>41770.33</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net farm income = (E – D)</td>
<td>131362.93</td>
<td>101841.29</td>
<td>41770.33</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm financial ratios</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross margin= E-B</td>
<td>136670.53</td>
<td>101841.29</td>
<td>41770.33</td>
<td></td>
</tr>
<tr>
<td>Gross ratio = D/E</td>
<td>0.339</td>
<td>0.590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating ratio = B/E</td>
<td>0.312</td>
<td>0.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed ratio = C/E</td>
<td>0.026</td>
<td>0.024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on capital invested=F/D</td>
<td>1.95</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income/expenses ratio = E/D</td>
<td>2.95</td>
<td>1.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profitability Index = F/E</td>
<td>0.66</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Field survey (2015)

The income/expenses ratio was 2.95 and 1.70 for adopters and non-adopters, respectively. This implies that the farm generated 2.95 times more income than expenses for adopters of improved maize varieties and 1.70 times more income for non-adopters. This shows that the farms that adopted IMV were more profitable than non-adopters. Larger income/expenses ratio shows the good financial standing of the enterprise. The profitability index (P.I.) was 0.66 and 0.40 for adopters and non-adopters respectively. This implies that for every naira earned as revenue, 66kobo was returned to the maize farmer that adopted improved seeds, compared to 40kobo for the non-adopters. Profit index (PI)
shows the level of returns per income. For a farm to be profitable, the PI should be greater than zero. If PI is negative, it implies that the farm is losing money. This result shows that IMV was profitable in the study area.

5. Conclusion
The study concluded that improved maize seed adoption was more profitable than using local seed. Adoption of IMV was determined by socioeconomic characteristics of smallholder farmers. The stochastic frontier model showed that the determinants of technical efficiency for adopters were age, educational status and farm income while the determinants of technical efficiency for non-adopters were educational status, farm income and capital input. The study further concluded that adopters were more technically efficient compared to non-adopters thus had higher gross income per hectare, even though there still exist a large room for improvement in the levels of efficiency. The t-test result showed that adoption of IMV gave greater yield compared to non-adoption. The constraints showed high cost of input, cost of IMV, access to IMV and unavailability of land as high ranked among adopters and non-adopters.

Acknowledgement
I acknowledge that the authors have no conflict of interest as this research was aimed at improving lives and economies.

References

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.