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Abstract 

This methodological note aims to present a brief yet comprehensive step-by-step guide for estimating Dynamic 

Stochastic General Equilibrium (DSGE) models and its recent trends. The first chapter introduces DSGE models to 

achieve this, discussing their theoretical foundations, historical evolution, and main applications. The second chapter 

explores the relationship between DSGE models and semi-structural models, highlighting their differences and 

complementarities in macroeconomic analysis. The third chapter presents the theoretical foundations for constructing 

these models, detailing the behavior of economic agents, general equilibrium mechanisms, and the modeling of 

stochastic shocks. The fourth chapter provides examples of the application of DSGE models in monetary and fiscal 

policy, analyzing the influence of different economic policy rules on macroeconomic behavior. Finally, the fifth chapter 

outlines the limitations of using DSGE models, including theoretical criticisms, difficulties in modeling economic crises, 

and challenges in parameter estimation. Thus, we aim to contribute to researchers, market professionals, and students 

who intend to use these models in their work. 

Keywords: Dynamic Stochastic General Equilibrium, methodological note, guide to estimate, DSGE models 

JEL Classification: C51, E32, E62, E52 

1. Introduction to DSGE Models 

This methodological note aims to present a practical guide for the use of DSGE models and their recent trends. DSGE 

(Dynamic Stochastic General Equilibrium) models represent a central approach in modern macroeconomics, providing 

a framework for analyzing the interactions between economic agents in a dynamic and shock-prone environment. Since 

their inception, these models have become indispensable tools for central banks and research institutions, combining 

microeconomic fundamentals with mathematical rigor. 

DSGE models derive from a tradition that began with computable general equilibrium (CGE) models and the 

introduction of stochastic shocks into real business cycle (RBC) models, as proposed by Kydland and Prescott (1982). 

From these pioneering works, the focus shifted to include monetary policy shocks and nominal frictions, as illustrated in 

Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003). Kydland and Prescott (1982) introduced 

productivity shocks as determinants of business cycles. Smets and Wouters (2003) expanded the model to include 

nominal frictions and Bayesian estimation, integrating real data into DSGE models. 

A DSGE model is built from the following basic elements: 

 Rational Agents—Households maximize intertemporal utility, while firms maximize profits. As Lucas (1976) 

discussed, agents form rational expectations, ensuring consistency with the dynamics of the model. 

 General Equilibrium - All markets (goods, labor, capital) are resolved simultaneously, ensuring that supply and 

demand are equal. 

 Dynamics and Stochasticity - Economic shocks (such as technology, fiscal policy, or preferences) are modeled 

as autoregressive stochastic processes. 

Main Features 

 Microfoundations - DSGE models are based on microfoundations that connect individual decisions to aggregate 

equilibrium. This allows economic policies to be evaluated based on their direct impact on the behavior of 

agents. 

 Exogenous Shocks - Stochastic shocks play a crucial role. For example:  
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Productivity Shocks: 

𝐴𝑡 =  𝜌𝐴𝑡−1 + 𝜀𝑡           𝜀𝑡~ 𝑁(0, 𝜎
2) 

Initially modeled by Kydland and Prescott (1982). 

Monetary Shocks - Deviations from the Taylor rule, as explored by Smets and Wouters (2007). 

 Nominal Frictions - The incorporation of price and wage rigidities, as in Calvo (1983), allows us to capture 

short-term fluctuations and the effects of monetary policies. 

Practical Applications 

 Monetary Policy - Central banks use DSGE models to predict the impact of interest rate changes on inflation and 

GDP. For example, the European Central Bank (ECB) has adopted the Smets and Wouters (2003) framework in 

its monetary policy reports. 

 Shock Analysis - DSGE models help to decompose macroeconomic variations into components attributable to 

demand, supply, or economic policy shocks. 

 Fiscal Sustainability - Simulations can assess the sustainability of public debt under different fiscal scenarios, as 

discussed in Gali (2008). 

Limitations and Criticisms 

Although widely used, DSGE models are not without their critics: 

 Restrictive Assumptions - Perfect rationality and complete markets may be unrealistic. Criticisms by authors 

such as Stiglitz (2018) emphasize the exclusion of heterogeneous agents. 

 Adaptation to Crises - Difficulty in modeling extreme events, such as financial crises or pandemics. 

DSGE models represent a powerful synthesis of economic theory and quantitative methods. Despite their limitations, 

they continue to evolve, incorporating advances such as agent heterogeneity and machine learning. 

2. DSGE and Semi-Structural Models: Evolution, Applications and Comparisons 

Macroeconomic modeling has evolved significantly, with two main approaches emerging as pillars of economic 

analysis: DSGE (Dynamic Stochastic General Equilibrium) models and semi-structural models. This chapter explores 

the historical evolution of these methodologies, discusses their applications in different economic contexts, and 

compares their predictive capabilities, especially in financial crisis scenarios. 

Semi-structural models emerged as a response to the need for practical analysis and economic forecasting. Built on 

empirical relationships, such as the IS-LM curve, they are widely used in central banks and international institutions. 

Classic example: IMF Global Model, which combines theoretical economic constraints with empirical adjustments to 

capture short-term economic fluctuations. Initial limitation: Lack of theoretical consistency and difficulties in dealing 

with structural shocks (Dieppe et al., 2012). 

Fundamental Differences 

Table 1. Construction and Structure 

Aspect Semi-Structural Models DSGE Models 

Theoretical Basis Empirical, based on observed macroeconomic relationships. Rigorous microfoundation. 

Flexibility High, allows adjustments to data. Limited by microfoundations. 

Objective Short-term forecasts and empirical analysis. Analysis of structural policies and shocks. 

Practical Applications 

 Semi-Structural Models 

a) Useful for quarterly GDP and inflation forecasts. 

b) The primary tool in central banks for monetary policy reporting. 

 DSGE Models 

a) Applied in counterfactual simulations, such as the impact of fiscal or monetary shocks. 

b) Long-term analysis of structural policies. 

Case Studies 

Predictability in the Context of Financial Crises:  
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This study compares an estimated DSGE model with a semi-structural model during the 2008 crisis. 

Specifications: 

- Semi-Structural Model: 

a) Extended IS-LM curve including a Taylor rule for monetary policy. 

b) Incorporated dynamically adjusted credit spread data. 

- DSGE Model: 

a) Included financial acceleration based on Bernanke, Gertler, and Gilchrist (1999). 

b) Estimated using output, inflation, and interest rate data. 

Results: 

- The semi-structural model provided accurate forecasts for GDP in the short term (3-6 months) due to the flexibility to 

quickly adjust to the data. 

- The DSGE model excelled in analyzing structural shocks, identifying how credit spreads amplified the recession. 

Detailed Empirical Comparisons 

Study on Fiscal Multipliers 

A study conducted by Blanchard and Perotti (2002) used semi-structural models to estimate fiscal multipliers, while 

recent studies, such as Gali (2015), employed DSGEs. 

- Empirical Findings: 

a) The fiscal multipliers estimated by the semi-structural models varied between 0.5 and 1.5, depending on the 

methodology and the period analyzed. 

b) DSGEs better captured long-term effects, showing that fiscal stimulus can have negative impacts in economies 

with tight budget constraints. 

Impact of Unconventional Monetary Policies: 

After the 2008 crisis, monetary policies such as quantitative easing were analyzed using both approaches. 

Semi-Structural Models: 

  - They identified positive short-term impacts on credit and inflation. 

DSGE Models: 

  - Captured the long-term impact of policies, revealing potential risks of asset bubbles. 

Integration of Approaches 

Complementary Use: 

Many central banks and institutions combine semi-structural models and DSGEs to get the best of both worlds: 

Semi-Structural: 

  - Short-term forecast. 

  - Rapid response to non-structural shocks. 

DSGEs: 

  - Structural policy assessment and counterfactual simulations. 

Real Examples: 

European Central Bank - The New Area-Wide Model (NAWM) integrates DSGE principles with semi-structural 

adjustments for improved forecasting of the euro area. 

Federal Reserve - Combines a DSGE model for long-term analysis with the FRB/US model for short-term forecasting. 

The comparative analysis between semi-structural models and DSGEs highlights their strengths and limitations. While 

semi-structural models are powerful tools for rapid, data-adjusted forecasts, DSGEs provide a robust theoretical basis 

for analyzing policies and long-term impacts. The integration of both approaches has proven effective in addressing the 

complex challenges of modern macroeconomics. 

3. Theoretical Foundations of DSGE Models 

DSGE (Dynamic Stochastic General Equilibrium) models are built on a solid theoretical basis that combines economic 
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microfoundations, general equilibrium, and intertemporal dynamics. This chapter explores in detail the theoretical 

foundations of these models, highlighting the decisions of economic agents, stochastic shocks, and the concept of 

equilibrium. 

3.1 Economic Microfoundations 

Microfoundations ensure that DSGE models are consistent with economic theory by relying on the optimization 

decisions of households and firms. These foundations are essential for capturing the interactions between agents and 

macroeconomic dynamics. 

3.1.1 Families 

Households maximize their intertemporal utility 𝑈, represented by the discounted sum of utilities over time: 

𝑈 =  ∑𝛽𝑡𝑢(𝐶𝑡𝐿𝑡),

∞

𝑡=0

 

where: 

- 𝐶𝑡: Consumption in the period  ; 

- 𝐿𝑡: Job offered during the period  ; 

- 𝛽: Intertemporal discount factor (0   𝛽   ); 

- 𝑢(𝐶𝑡𝐿𝑡): Utility function that captures the preference between consumption and leisure. 

The household's intertemporal budget constraint is: 

𝐶𝑡 + 𝐾𝑡+1 = ( + 𝑟𝑡)𝐾𝑡 + 𝑊𝑡𝐿𝑡 − 𝑇𝑡 , 

where: 

- 𝐾𝑡: Capital stock; 

- 𝑟𝑡: Return on capital; 

- 𝑊𝑡: Real wage; 

- 𝑇𝑡: Taxes paid to the government. 

 

The first-order conditions result in the Euler equation for consumption: 

𝑢′(𝐶𝑡) =  𝛽( + 𝑟𝑡+1)𝑢
′(𝐶𝑡+1), 

which describes how households balance consumption between periods. 

3.1.2 Companies 

Firms maximize profits, subject to an aggregate production function such as the Cobb-Douglas function: 

𝑌𝑡 = 𝐴𝑡𝐾𝑡
𝛼𝐿𝑡
1−𝛼 , 

where: 

- 𝑌𝑡: Aggregate product; 

- 𝐴𝑡: Total factor productivity; 

-  : Elasticity of output concerning capital. 

The profit maximization condition leads to the following optimal decisions: 

- Demand for work: 𝑊𝑡 = ( −  )𝐴𝑡𝐾𝑡
𝛼𝐿𝑡
−𝛼; 

- Return on capital: 𝑟𝑡 =  𝐴𝑡𝐾𝑡
𝛼−1𝐿𝑡

1−𝛼. 

3.2 Dynamics and Stochasticity 

3.2.1 Economic Shocks  

Exogenous shocks are represented by stochastic processes that directly affect economic variables: 

- Productivity Shocks: 
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𝐴𝑡 = 𝜌𝐴𝐴𝑡−1 + 𝜀𝑡
𝐴          𝜀𝑡

𝐴~ 𝑁(0, 𝜎𝐴
2), 

where 𝜌𝐴 captures the persistence of the shock. 

- Monetary Shocks: Unexpected Interest Rate Deviations: 

𝑖𝑡 = 𝜌𝑖𝑡−1 + 𝜀𝑡
𝑚, 

3.2.2 Rational Expectations 

Rational expectations ensure that agents use all available information to predict the future, adjusting their 

decisions accordingly. This is captured by differential equations with expectations, as: 

𝐸𝑡[𝑢
′(𝐶𝑡+1)( + 𝑟𝑡+1)] = 𝑢

′(𝐶𝑡). 

3.3 General Equilibrium 

DSGE models seek a dynamic general equilibrium, where: 

 Household consumption, work, and investment decisions are optimized. 

 Firms maximize profits given market conditions. 

 All markets balance, ensuring that supply and demand are equal: 

𝐶𝑡 +  𝑡 = 𝑌𝑡 , 

where 𝑌𝑡 is the aggregate investment. 

General equilibrium is calculated by solving a system of dynamic equations, representing the joint behavior of agents. 

3.4 Theoretical Limitations 

Although the theoretical foundations of DSGE models are robust, some limitations remain: 

a. Representative Agents - The absence of heterogeneity can limit the analysis of inequalities. 

b. Rational Expectations: - Models assume perfect rationality, which may be unrealistic in certain situations. 

c. General Equilibrium: - Ignores possible temporary imbalances in specific markets. 

DSGE models are based on intertemporal decisions of households and firms, with stochastic shocks affecting economic 

dynamics. General equilibrium ensures consistency across markets, while rational expectations connect current 

decisions to the expected future. Despite their theoretical elegance, the models face limitations in capturing the 

complexity of the real economy. 

4. Monetary and Fiscal Policy in DSGE Models 

DSGE (Dynamic Stochastic General Equilibrium) models are widely used to assess the impacts of economic policies in 

a dynamic and stochastic environment. This chapter examines how monetary and fiscal policies are modeled in these 

frameworks, highlighting the transmission mechanisms, the interaction between them, and empirical examples based on 

the literature. 

4.1 Monetary Policy 

Monetary policy plays a central role in DSGE models, often being represented by explicit rules that describe the central 

bank's response to changes in inflation, output, or other economic variables. 

4.1.1 Taylor's rule 

One of the most common approaches is the Taylor Rule (Taylor, 1993), which relates the nominal interest rate 𝑖𝑡with 

inflation  𝑡 and product deviation  𝑡  about the potential: 

𝑖𝑡 = 𝜌𝑖𝑡−1 + ( − 𝜌)[𝜙𝜋 𝑡 + 𝜙𝑦 𝑡] + 𝜀𝑡
𝑚, 

where: 

- 𝜌: Monetary policy inertia coefficient. 

- 𝜙𝜋: Interest rate sensitivity to inflation. 

- 𝜙𝑦: Sensitivity to product drift. 

- 𝜀𝑡
𝑚: Monetary policy shock, modeled as 𝜀𝑡

𝑚~ 𝑁(0, 𝜎𝑚
2 ). 

4.1.2 Transmission Mechanisms 
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Monetary policy transmission channels include: 

1. Interest Rate Channel: Changes in the nominal rate influence the cost of capital, affecting consumption and 

investment (Woodford, 2003). 

2. Expectations Channel: Central bank credibility shapes future inflation expectations, which affect current 

decisions (Gali, 2008). 

3. Credit Channel: Credit restrictions become less rigid when interest rates fall, increasing consumption 

(Bernanke, Gertler, and Gilchrist, 1999). 

4.1.3 Optimal Monetary Policy 

Central banks may seek to minimize a social loss function, such as: 

𝐿 =
 

2
[𝜆𝑦( 𝑡 −  𝑡

∗)2 + 𝜆𝜋( 𝑡 −  𝑡
∗)2], 

where: 

-  𝑡
∗: Potential product. 

-  𝑡
∗: Inflation target. 

- 𝜆𝑦 and 𝜆𝜋: Relative weights assigned to output deviations and inflation. 

 

4.2 Fiscal Policy 

Fiscal policy in DSGE models captures the effects of decisions on public spending, taxation, and public debt. 

4.2.1 Public Expenditure 

Government spending,  𝑡, is often modeled as a stochastic process with persistence: 

 𝑡 = 𝜌𝑔 𝑡−1 + 𝜀𝑡
𝑔
, 

where 𝜀𝑡
𝑔
~ 𝑁(0, 𝜎𝑚

2 ). 

4.2.2 Taxation 

Taxation can be modeled in different ways: 

1. Proportional Taxes: Revenue is a fraction of output, 𝑇𝑡 =  𝑌𝑡, where   is the tax rate. 

2. Lump-Sum Taxes: A simplified approach where all agents pay the same flat amount. 

4.2.3 Budget Constraints 

The government faces an intertemporal budget constraint: 

𝐵𝑡 = ( + 𝑟𝑡)𝐵𝑡−1 +  𝑡 − 𝑇𝑡  

where: 

- 𝐵𝑡: Public debt stock in the period  . 

- 𝑟𝑡: Real interest rate. 

4.2.4 Effects of Fiscal Shocks 

Fiscal shocks can stimulate output in the short term, but their impact depends on the underlying fiscal rule (Gali, 2008): 

- An increase in  𝑡  can lead to positive multiplier effects, depending on nominal rigidity and marginal 

propensity to consume. 

4.3 Interaction between Monetary and Fiscal Policies 

The interaction between monetary and fiscal policies can be classified into two regimes: 

1. Active Monetary and Passive Fiscal Policy: 

   - Monetary policy stabilizes inflation while fiscal policy adjusts taxes to maintain debt sustainability. 

   - Smets and Wouters (2007) emphasize that this regime is more common in advanced economies. 

2. Active Fiscal and Passive Monetary Policy: 

   - Fiscal policy leads, determining the debt trajectory, while monetary policy accommodates the inflationary 
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equilibrium. 

Interaction Model 

DSGE models incorporate interaction through simultaneous equations that link the responses of interest rates and taxes 

to shocks. 

4.4 Empirical Studies 

1. Smets and Wouters (2003) - Estimated the effects of monetary and fiscal shocks in DSGE models for the euro area, 

highlighting the importance of active monetary policy. 

2. Gali (2008) - Demonstrated that fiscal shocks can have positive effects on output, especially in periods of recession. 

3. Bernanke, Gertler, and Gilchrist (1999) - Explore how credit shocks interact with monetary policies in a DSGE 

context. 

Monetary policy is often shaped by explicit rules such as the Taylor Rule, while fiscal policy is based on budget 

constraints and fiscal multipliers. The interaction between these policies defines economic regimes and affects 

macroeconomic stability. Empirical studies highlight the usefulness of DSGE models for analyzing issues such as fiscal 

stimulus, debt sustainability, and responses to monetary shocks. 

5. Bayesian Estimation and Solution Methods in DSGE Models 

Solving and estimating DSGE models is a technical challenge that combines mathematical and computational methods. 

This chapter details the main solution methods, such as linearization and perturbation, and introduces Bayesian 

estimation, which integrates real data and a priori information to infer model parameters. 

Solving a DSGE model involves deriving the dynamic trajectories of the endogenous variables in response to stochastic 

shocks. This requires transforming the model equations into a form that allows numerical or analytical solutions. 

5.1.1 Linearization 

Linearization is the most common method and consists of approximating the model around its steady state. For a 

model represented as 𝑓(𝑥𝑡, 𝑥𝑡−1, 𝜖𝑡) = 0, first-order linearization generates: 

�̂�𝑡 = 𝐴�̂�𝑡−1 + 𝐵𝜖𝑡, 

where �̂�𝑡 represents the variations around the steady state. 

Advantages: 

- Computational simplicity. 

- Suitable for small-magnitude shocks. 

Limitations: 

- Ignores non-linear effects such as stochastic volatility or large magnitude shocks (Collard, 2001). 

5.1.2 Perturbation Methods 

Perturbation methods expand the solution to higher orders, such as second or third order. This is useful for 

capturing nonlinear effects and endogenous volatility: 

𝑥𝑡 = 𝑥
∗ + 𝜙1𝜖𝑡𝜙2𝜖𝑡2 +⋯, 

where 𝜙2 and higher terms introduce non-linear responses. 

Applications: 

- Models with stochastic volatility, such as Basu and Bundick (2017). 

- Risk analysis and non-linear effects. 

5.1.3 Simulation and Iteration 

For complex models, iteration simulation is employed. Methods such as Value Function Iteration or Policy Function 

Iteration solve dynamic models with highly nonlinear constraints. 

5.2 DSGE Model Estimation 

Estimation allows DSGE models to be adjusted to real data, calibrating the parameters to maximize their predictive 

ability. The Bayesian approach is widely adopted due to its flexibility in incorporating a priori information. 

5.2.1 Maximum Likelihood Estimation 
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Maximum likelihood is a classical technique that adjusts parameters to maximize the probability of the observed data, 

given the structure of the model. However, it can be sensitive to specification errors and initial values. 

5.2.2 Bayesian Estimation 

Bayesian estimation combines a priori information (𝜌(𝜃)) with the likelihood of the data 𝜌(𝑌|𝜃) to generate the 

posterior distribution: 

𝜌(𝜃|𝑌) ∝ 𝜌(𝑌|𝜃)𝜌(𝜃), 

where: 

- 𝜃: Parameter vector. 

- 𝑌: Observed data. 

Bayesian Estimation Steps: 

1. Definition of Priors: 

Choose initial distributions for the parameters based on literature or prior knowledge. Example: 

𝜙𝜋~𝑁( .5, 0.2), 𝜌~𝐵𝑒 𝑎(0.8, 0. ). 

2. Likelihood Calculation: 

Using the Kalman Filter, the likelihood of the observed data is calculated iteratively. 

3. MCMC Sampling: 

Methods such as Metropolis-Hastings or No-U-Turn Sampler (NUTS) are used to explore the posterior 

distribution. 

4. Results Analysis: 

   - Posterior distributions of parameters. 

   - Marginal likelihood for model comparison. 

5.3 Practical Implementation 

5.3.1 Dynare Usage 

Dynare is a powerful tool for solving and estimating DSGE models. A basic example of Bayesian estimation in Dynare: 

 

 

 

Results: 

- IRFs from subsequent distributions. 

- MCMC chain convergence diagnosis. 

5.3.2 IRF Simulation 

Impulse response functions (IRFs) are widely used to interpret the effects of shocks in models. From estimated 

parameters, IRFs show the dynamics of variables such as inflation, output, and interest rates. 

5.3.3 Case Studies 

1. Smets and Wouters (2003) - Estimation of a DSGE model for the euro area with multiple shocks. 

2. Fernandez-Villaverde et al. (2006) - Using third-order perturbation methods to analyze stochastic volatility. 

5.4 Challenges and Limitations 

1. Parameter Identification - Some parameters may not be identified due to the structure of the model. Identification 

tests, such as those of Iskrev (2010), help diagnose this problem. 

2. Numerical Problems - MCMC methods can be sensitive to the choice of initial values and the jump scale. 

3. Fit to Data - Choosing observable variables is crucial. Poor specification can lead to misleading results. 

Solution methods such as linearization and perturbation are fundamental to solving DSGE models. Bayesian estimation 

is widely used, allowing the incorporation of prior information and the fitting of models to real data. Tools such as 

Dynare and MATLAB simplify practical implementation, while empirical studies highlight the relevance of the models 

estimation(datafile='data.xlsx', mh_replic=20000, mh_nblocks=2, mh_jscale=0.8, bayesian_irf); 
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for macroeconomic analysis. 

6. Analysis of Volatility and Economic Shocks in DSGE Models 

Economic shocks and stochastic volatility are central elements in DSGE (Dynamic Stochastic General Equilibrium) 

models, allowing the exploration of macroeconomic dynamics and the response of economic variables to unexpected 

events. This chapter covers in detail the modeling, types of shocks, volatility effects, and interpretation of impulse 

response functions (IRFs), supported by the relevant literature. 

6.1 Modeling Economic Shocks 

Economic shocks in DSGE models are represented by stochastic variables that directly affect economic agents. Shock 

modeling plays a crucial role in capturing economic fluctuations. 

6.1.1 General Structure of Shocks 

A typical shock is modeled as a first-order autoregressive (AR(1)) process: 

𝜖𝑡 = 𝜌𝜖𝑡−1 + 𝑢𝑡 ,     𝑢𝑡~𝑁(𝑂, 𝜎
2), 

where: 

- 𝜌: Persistence of shock; 

- 𝑢𝑡: Stochastic innovation with norm distribution; 

- 𝜎2: Shock variance. 

This approach allows us to incorporate the persistence of shocks, such as those to productivity, monetary policy, or 

preferences. 

6.1.2 Types of Shocks 

1. Productivity Shocks: 

   - Introduced by Kydland and Prescott (1982), these shocks affect technological efficiency: 

𝐴𝑡 = 𝜌𝐴𝐴𝑡−1 + 𝜀𝑡
𝐴          𝜀𝑡

𝐴~ 𝑁(0, 𝜎𝐴
2), 

 

   - They are fundamental to explaining real economic cycles. 

2. Monetary Policy Shocks: 

   - Represent unexpected deviations in interest rate decisions: 

𝑖𝑡 = 𝜌𝑖𝑡−1 + 𝜀𝑡
𝑚 

   - Smets and Wouters (2003) used these shocks to capture the effects of active monetary policies. 

3. Fiscal Shocks: 

   - Public spending or tax collection varies: 

 𝑡 = 𝜌𝐺 𝑡−1 + 𝜀𝑡
𝐺 , 

   - Gali (2008) highlighted its role in stimulating the economy during recessions. 

4. Preference Shocks: 

   - Affect household consumption and savings decisions: 

𝑢(𝐶𝑡𝐿𝑡) =
𝐶𝑡
1−𝜎

 − 𝜎
+  𝜓

𝐿𝑡
1+𝑛

 + 𝜂′
 

     where changes in 𝜓 change preferences between leisure and work. 

 

6.2 Stochastic Volatility 

Stochastic volatility describes the variation in the magnitude of shocks over time, adding a layer of complexity and 

realism to DSGE models. 

6.2.1 Volatility Modeling 

Stochastic volatility is often modeled as: 
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𝜎𝑡 = 𝜎0 exp(𝜂𝑡),    𝜂𝑡~𝑁(0, 𝜎
2), 

where: 

- 𝜎𝑡: Volatility in the period  ; 

- 𝜂𝑡: Volatility shock. 

This approach allows for capturing periods of high and low uncertainty, such as financial crises. 

6.2.2 Impact of Volatility 

1. Shock Amplification: 

   - In periods of high volatility, the effects of economic shocks are amplified. 

   - Basu and Bundick (2017) showed that volatility shocks increase uncertainty and reduce consumption. 

2. Non-linearity: 

   - Stochastic volatility generates non-linear effects, affecting agents' intertemporal decisions. 

6.2.3 Volatility and Economic Policy 

- Policymakers can use stochastic volatility models to assess the impact of shocks in uncertain environments. 

- Gali (2008) argues that periods of high volatility require more active fiscal policies. 

6.3 Impulse Response Functions (IRFs) 

IRFs are crucial tools for analyzing the dynamics of endogenous variables in response to exogenous shocks. 

6.3.1 Interpretation of IRFs 

- They represent the dynamic response of variables such as inflation ( 𝑡) and product (𝑌𝑡) to a shock in  = 0. 

- IRF example for a monetary policy shock: 

  - Increase in interest rates reduces output and inflation in the short term. 

6.3.2 Calculation Methods 

1. First Order Linearization: 

   - Used to obtain linear responses to shocks. 

   - Suitable for small shocks. 

2. Higher Order Disturbance: 

   - Allows capturing non-linear effects and high-magnitude shocks. 

6.3.3 Practical Examples 

- Smets and Wouters (2007): IRFs show how inflation, output, and interest rates respond to monetary shocks. 

- Basu and Bundick (2017): Volatility IRFs capture the impact of shocks in periods of high uncertainty. 

6.4 Empirical Studies 

1. Smets and Wouters (2003) - Estimated a DSGE model for the euro area and demonstrated that demand shocks 

explain a large part of short-term economic fluctuations. 

2. Basu and Bundick (2017) - Demonstrated that volatility shocks significantly affect consumption and production, 

highlighting the importance of capturing economic uncertainty. 

3. Kydland and Prescott (1982) - showed that productivity shocks are the main source of long-term economic 

fluctuations. 

Economic shocks and stochastic volatility are essential elements in DSGE models, providing insights into 

macroeconomic fluctuations. Shock modeling allows exploring the impacts of unexpected events, while stochastic 

volatility adds complexity and realism. IRFs are indispensable tools for interpreting model dynamics. Empirical studies 

highlight the relevance of these elements for understanding and predicting economic cycles. 

7. DSGE Models in Dynare: Structure and Implementation 

Dynare is one of the most widely used tools for solving, estimating, and simulating DSGE (Dynamic Stochastic General 

Equilibrium) models. This chapter presents the basic components needed to implement a DSGE model in Dynare, with 

attention to minimum blocks, care in balancing equations and variables, specification of shocks, and calculation of the 

steady-state. 
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7.1 Basic Structure of a File in Dynare 

A model file in Dynare, usually with a .mod extension, follows a modular structure. Each block has a specific purpose 

and must be defined correctly to avoid runtime errors. 

Minimum Required Blocks 

1. VAR block: 

   - List the endogenous variables of the model. 

   - Example: 

 

    

   - Here, 𝑐 (consumption), 𝑘 (capital stock), 𝑖 (investment) and   (product) are endogenous variables. 

2. Varexo block: 

   - Lists exogenous variables, which generally represent shocks. 

   - Example:  

 

 

   - In this case, 𝜀𝑎 it is an exogenous shock, like a productivity shock. 

3. Parameters block: 

   - Defines the model parameters. 

   - Example: 

 

 

4. Model block: 

   - Contains the equations of the model. There must be an exact correspondence between the number of equations and 

endogenous variables. 

   - Exemple: 

 

 

 

 

 

 

5. Shocks block: 

- Specifies the structure of stochastic shocks, including their variance. 

- Example: 

 

 

 

 

6. Initval block (or steady_state_model): 

- Sets the initial values or the steady-state calculation or provides initial conditions for variables. 

- Example: 

 

 

 

var c k i y; 

varexo eps_a; 

parameters alpha beta delta; 

     model; 

     y = c + i; 

     c = beta*c(+1)*(1+r-delta); 

     i = k - (1-delta)*k(-1); 

     end; 

 

     shocks; 

     var eps_a; stderr 0.01; 

     end; 

     initval; 

     c = 1; k = 10; y = 5; i = 0.5; 

     end; 
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7.2 Be Careful with the Number of Equations and Variables 

One of the most important checks when building a model in Dynare is to ensure that the number of equations equals the 

number of endogenous variables. 

Common Mistakes 

1. Underdetermined System: 

   - The number of equations is smaller than the number of endogenous variables. 

   - It can occur if an essential equation, such as the market equilibrium condition, is omitted. 

2. Overdetermined System: 

   - The number of equations exceeds the number of endogenous variables. 

   - Indicates redundancy, often caused by modeling error, such as including two versions of the same equation. 

Practical Tips 

- Use the model_diagnostics command in Dynare to identify system issues. 

- Check equilibrium conditions, such as the aggregate budget constraint, to ensure the model is closed correctly. 

7.3 Shock Specification 

Shocks represent the sources of uncertainty in DSGE models and are specified in the shocks block. 

Basic Structure 

Shocks generally follow an AR(1) process: 

𝜖𝑡 = 𝜌𝜖𝑡−1 + 𝑢𝑡 ,     𝑢𝑡~𝑁(𝑂, 𝜎
2), 

In Dynare: 

 

 

 

 

Correlated Shocks 

To specify correlated shocks: 

 

 

 

 

 

 

7.4 Steady-State Calculation 

The steady-state is the long-term equilibrium point of the model, used as a reference for dynamic calculations. 

Methods for Finding Steady-State 

1. Initval block: 

   - Sets estimated initial values: 

 

 

 

 

2. steady_state_model block: 

   - Uses analytical expressions to calculate the steady-state: 

 

shocks; 

var eps_a; stderr 0.01; // Shock variance 

end; 

shocks; 

var eps_a; stderr 0.01; 

var eps_b; stderr 0.02; 

var eps_a, eps_b = 0.5; // Covariance 

end; 

     initval; 

     c = 1; k = 10; y = 5; i = 0.5; 

     end; 
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3. External Files: 

   - For complex models, you can use a MATLAB file that calculates the steady-state. 

Common Steady-State Errors 

- Jacobian Singular - Indicates that the model has redundancies or is missing an equation. 

- Non-Existent Steady-State - Occurs when the initial values are very far from equilibrium. 

7.5 Analysis and Simulation 

Once the model is specified, Dynare provides tools for analysis and simulation. 

Impulse Response Functions (IRFs) 

IRFs show how endogenous variables respond to exogenous shocks. They are calculated automatically with: 

 

 

 

Bayesian Estimation 

DSGE models can be fitted to data using the Bayesian approach. This requires a varobs block to define observed 

variables and the estimation command. 

7.6 Practical Example: A Neoclassical Growth Model 

Full Code 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     steady_state_model; 

     y = c + i; 

     c = y - delta*k; 

     end; 

 

stoch_simul(irf=10) 
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var c k y i A; % Endogenous variables 

varexo eps_a;  % Exogenous shock 

parameters alpha beta delta rho sigma; % Model parameters 

 

% Parameter values 

alpha = 0.3; 

beta = 0.99; 

delta = 0.025; 

rho = 0.9; 

sigma = 0.01; 

 

model; 

% Production function 

y = A * k^alpha; 

 

% Product identity 

c + i = y; 

 

% Capital dynamics 

k = (1-delta)*k(-1) + i; 

 

% Stochastic process for TFP 

log(A) = rho * log(A(-1)) + eps_a; 

 

% Adjusted Euler equation 

1/c = beta * (1/c(+1)) * (1 + alpha * A(+1) * k(+1)^(alpha-1) - delta); 

end; 

 

% Calculated initial values for steady-state 

initval; 

k = ((alpha/(1/beta - (1-delta)))^(1/(1-alpha))); % Steady-state capital 

A = 1; % Initial productivity level 

y = A * k^alpha; % Output in steady-state 

i = delta * k; % Investment in steady-state 

c = y - i; % Consumption in steady-state 

end; 

 

shocks; 

% Exogenous shock specification 

var eps_a; stderr sigma; 

end; 
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Results 

- IRFs show the response of output and consumption to productivity shocks. 

- The stability of the model is verified by the number of eigenvalues within the unit circle. 

Modeling DSGEs in Dynare requires attention to structural details and model balancing. With the minimum building 

blocks (variables, parameters, equations, shocks, and initial conditions), it is possible to build and analyze robust 

models. Tools such as IRFs and simulations provide important insights into macroeconomic dynamics. 

8: Case Studies and Practical Examples in DSGE Models 

DSGE (Dynamic Stochastic General Equilibrium) models are widely used in practical applications to evaluate 

economic policies, analyze shocks, and forecast macroeconomic dynamics. This chapter presents detailed case studies 

and practical examples that illustrate how to implement and interpret these models, based on the literature and the use of 

tools such as Dynare and MATLAB. 

8.1 Case Study 1: Monetary Policy Analysis with the Taylor Rule 

8.1.1 Contextualization 

Monetary policy is often assessed using the Taylor Rule (Taylor, 1993), which relates the nominal interest rate to 

inflation and the output gap. This case study explores how variations in the rule's coefficients affect macroeconomic 

stability. 

8.1.2 Model 

The model considers the following monetary policy rule: 

𝑖𝑡 = 𝜌𝑖𝑡−1 + ( − 𝜌)[𝜙𝜋 𝑡 + 𝜙𝑦 𝑡] + 𝜀𝑡
𝑚, 

where: 

- 𝑖𝑡: Nominal interest rate; 

-  𝑡: Inflation rate; 

-  𝑡: Product deviation; 

- 𝜀𝑡
𝑚: Monetary shock. 

 

8.1.3 Implementation 

Using Dynare, the model is solved with different values of 𝜙𝜋 (inflation sensitivity) and 𝜙𝑦 (product sensitivity). The 

basic code would be: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var pi y i; % Endogenous variables: inflation (pi), output gap (y), interest rate (i) 

varexo eps_m; % Exogenous shock: monetary policy 

parameters rho phi_pi phi_y beta kappa; % Parameter declaration 

 

% Assignment of values to parameters 

rho = 0.8; % Persistence of the Taylor rule 

phi_pi = 1.5; % Sensitivity of the interest rate to inflation 

phi_y = 0.5; % Sensitivity of the interest rate to the output gap 

beta = 0.99; % Intertemporal discount factor 

kappa = 0.3; % Phillips curve parameter 
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8.1.4 Results 

The IRF (Impulse Response Function) graphs show that: 

- High values of 𝜙𝜋 quickly stabilize inflation but can amplify output volatility. 

- High values of 𝜙𝑦 reduce fluctuations in output but generate greater inflationary persistence. 

 

8.2 Case Study 2: Impact of Fiscal Shocks 

8.2.1 Contextualization 

Fiscal shocks, such as increases in government spending, have important implications for output and welfare. This study 

explores the effects of a temporary increase in government spending. 

8.2.2 Model 

The model uses the following specifications for government spending: 

 𝑡 = 𝜌𝐺 𝑡−1 + 𝜀𝑡
𝐺 , 

where: 

-  𝑡: Government spending; 

- 𝜌 : Persistence of public spending; 

- 𝜀𝑡
𝑚: Spending shock. 

 

The government's budget constraint is: 

𝐵𝑡 = ( + 𝑟𝑡)𝐵𝑡−1 +  𝑡 − 𝑇𝑡 

8.2.3 Implementation 

model; 

% Taylor rule for monetary policy 

i = rho*i(-1) + (1-rho)*(phi_pi*pi + phi_y*y) + eps_m; 

 

% Phillips curve with future expectations 

pi = beta*pi(+1) + kappa*y; 

 

% IS equation: relationship between output gap and real interest rate 

y = y(+1) - (i - pi(+1)); 

end; 

 

shocks; 

% Exogenous shock specification 

var eps_m; stderr 0.01; % Monetary policy shock with standard deviation 0.01 

end; 

 

% Simulation and IRFs 

stoch_simul(irf=10); 
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With Dynare, the impact of the shock is analyzed. The code for simulation includes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var y c g b r pi; // Endogenous variables 

varexo eps_g; // Exogenous shock to government spending 

parameters rho_g alpha beta tau phi_pi phi_y steady_r steady_pi; // Parameters 

 

// Set parameter values 

rho_g = 0.8; // Persistence of government spending 

alpha = 0.3; // Sensitivity of consumption to the real interest rate 

beta = 0.98; // Intertemporal discount factor 

tau = 0.25; // Tax rate 

phi_pi = 1.5; // Sensitivity of the interest rate to inflation 

phi_y = 0.5; // Sensitivity of the interest rate to output 

steady_r = 0.0; // Equilibrium interest rate 

steady_pi = 0.0; // Equilibrium inflation 

 

model; // Stochastic process for government spending 

g = rho_g*g(-1) + eps_g; 

 

// Aggregate output 

y = c + g; 

 

// Consumption function 

c = beta*c(+1) - alpha*(r - pi(+1)); 

 

// Government budget constraint 

b = (1 + r)*b(-1) + g - tau*y; 

 

// Taylor rule 

r = steady_r + phi_pi*(pi - steady_pi) + phi_y*y; 

 

// Inflation (simplified equation) 

pi = steady_pi + y; 

end; 

 

initval; 

y = 1; c = 0.8; g = 0.2; b = 0.1; r = 0.1; pi = 0.1; 

end; 

 

shocks; 

var eps_g; stderr 0.04; // Government spending shock 

end; 

 

stoch_simul(order=1, irf=20); // Stochastic simulation 
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8.2.4 Results 

- Fiscal shock increases output in the short run. 

- The persistence of spending (𝜌 ) determines the magnitude of the long-term impact. 

- Debt-to-GDP ratio could rise substantially depending on fiscal response. 

8.3 Case Study 3: Stochastic Volatility and Economic Policy 

8.3.1 Contextualization 

This study evaluates how stochastic volatility affects the impact of economic shocks, based on the model of Basu and 

Bundick (2017). 

8.3.2 Model 

The volatility of shocks is modeled as: 

𝜎𝑡 = 𝜎0 exp(𝜂𝑡),    𝜂𝑡~𝑁(0, 𝜎
2), 

where 𝜎𝑡 is the conditional volatility. 

8.3.3 Implementation 

Dynare allows you to model stochastic volatility with higher-order methods: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.3.4 Results 

- Periods of high volatility amplify the impacts of shocks. 

- IRFs show that uncertainty reduces consumption and investment. 

var y pi sigma; // Endogenous variables 

varexo eps_sigma; // Exogenous shock 

parameters beta sigma_0; // Parameters 

 

// Setting parameter values 

beta = 0.99; // Intertemporal discounting 

sigma_0 = 1; // Initial volatility 

 

model; 

sigma = sigma_0*exp(eps_sigma); // Dynamic volatility 

y = beta*y(+1) - (1/sigma)*pi(+1); // Output 

pi = beta*pi(+1) + sigma*y; // Inflation 

end; 

 

initval; 

y = 0; // Initial output 

pi = 0; // Initial inflation 

sigma = sigma_0; // Initial volatility 

end; 

 

shocks; 

var eps_sigma; stderr 0.05; // Defining the shock in sigma 

end; 

 

steady; // Calculate the steady state 

stoch_simul(order=1, irf=10); // IRF simulations 
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Case studies and practical examples demonstrate the versatility of DSGE models in analyzing economic policies and 

shocks. Computational tools such as Dynare allow for detailed simulations and clear visualizations, facilitating the 

interpretation of results and their use in real policies. 

9. Extensions and Recent Developments in DSGE Models 

DSGE (Dynamic Stochastic General Equilibrium) models have evolved significantly in recent decades, incorporating 

theoretical and computational advances to address complex macroeconomic issues. This chapter explores important 

extensions, including the introduction of heterogeneous agents, the modeling of financial frictions, and the use of 

artificial intelligence in DSGEs. 

9.1 Models with Heterogeneous Agents 

Traditional DSGE models assume a representative agent, which simplifies the analysis but ignores heterogeneity in 

consumption, labor, and savings decisions. The introduction of heterogeneous agents addresses these limitations. 

9.1.1 HANK Models Fundamentals 

HANK (Heterogeneous Agent New Keynesian) models combine heterogeneous agents with nominal frictions. They 

allow us to analyze the: 

1. Income and Wealth Distribution: 

   - Credit-constrained agents respond differently to economic shocks. 

   - Kaplan, Moll, and Violante (2018) show that monetary shocks have more amplified effects when there is 

inequality. 

2. Fiscal Multipliers: 

   - The effects of public spending vary according to the marginal propensity to consume agents. 

9.1.2 Modeling 

HANK models require the use of advanced numerical methods such as state discretization and iterative solution 

methods: 

∫𝑉(𝑎, 𝜖)𝜓(𝑎, 𝜖)𝑑𝑎 = ∑ 𝛽𝑡𝑢(𝑐𝑡, 𝑙𝑡),
𝑡

 

where: 

- 𝑎: Assets; 

- 𝜖: Idiosyncratic shocks; 

- 𝜓(𝑎, 𝜖): Probability distribution. 

9.2 Financial Frictions 

Financial frictions play a central role in times of crisis, as demonstrated by the 2008 crisis. Incorporating these frictions 

improves the predictive ability of DSGE models. 

9.2.1 The Bernanke, Gertler and Gilchrist Model 

The model incorporates a financial acceleration mechanism, where economic shocks amplify the effects through credit 

restrictions: 

 𝑡 = 𝜙(
𝑄𝑡
𝐾𝑡
),  

where: 

-  𝑡: Investment; 

- 𝑄𝑡: Market value of capital; 

- 𝐾𝑡: Capital stock. 

9.2.2 Recent Extensions 

1. Spread Shocks: 

   - Gertler and Karadi (2011) introduced credit spread shocks to capture financial crises. 

2. Incomplete Markets: 

   - Recent studies analyze the impact of incomplete financial markets on consumption and investment. 
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9.3 ZLB (Zero Lower Bound) Modeling 

The ZLB occurs when nominal interest rates reach levels close to zero, limiting the effectiveness of conventional 

monetary policy. 

9.3.1 Dynamics in ZLB 

Once the ZLB is reached, monetary policy needs to be adjusted to avoid deflationary traps. Gali (2015) shows that the 

effectiveness of fiscal stimulus increases at the ZLB. 

9.3.2 Numerical Solutions 

Solving DSGE models with ZLB requires higher-order methods or global simulations: 

- Third-order perturbation - Captures nonlinearities caused by ZLB. 

- Policy Function Iteration - Models explicit constraints on monetary policy. 

9.3.3 Empirical Studies 

- Christiano, Eichenbaum, and Rebelo (2011) demonstrated that fiscal stimuli can be highly effective in the ZLB. 

9.4 Stochastic Volatility and Uncertainty 

Stochastic volatility has become a fundamental element in modern DSGEs, capturing economic uncertainty and its 

impacts. 

9.4.1 Modeling 

Volatility is modeled as: 

𝜎𝑡 = 𝜎0 exp(𝜂𝑡),    𝜂𝑡~𝑁(0, 𝜎
2), 

where 𝜎𝑡 varies with specific shocks. 

9.4.2 Impacts 

1. Amplification of Shocks - Basu and Bundick (2017) show that uncertainty shocks reduce consumption and 

investment. 

2. Nonlinear Responses - Models with stochastic volatility generate IRFs that capture nonlinear effects. 

9.5 Artificial Intelligence and DSGEs 

Recently, artificial intelligence (AI) methods have been introduced to improve the calibration, estimation, and solution 

of DSGEs. 

9.5.1 AI Applications 

1. Neural Networks - Deep neural networks are used to approximate policy functions and predict economic variables 

(Fornaro et al., 2020). 

2. Genetic Algorithms - Optimize parameters that are difficult to identify, such as unobservable shocks. 

9.5.2 Benefits 

- Reduce computational costs in large models. 

- Improve the accuracy of estimates with large volumes of data. 

This chapter explored fundamental extensions of DSGE models, including the introduction of heterogeneous agents, 

financial frictions, and stochastic volatility. Recent developments, such as ZLB modeling and the use of artificial 

intelligence, have significantly expanded the applications of these models, allowing for richer analysis adapted to the 

complexities of modern economies. 
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