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Abstract  

This study is concerned with new ways to identify and analyse the factors on cross-sectional returns in financial markets 

with respect to their time-variability. Therefore, classification and regression trees and conventional regression models 

are applied. This study uses data on the S&P 500 from 1999 to 2019. Empirical findings show high time variability of 

factors on cross-sectional returns. The high level of time-variability is not dependent on the applied model. It is also 

shown that CARTs and conventional regression models have low power when it comes to identifying the factors on 

cross-sectional returns or predicting the returns themself. 
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1. Introduction 

Factors influencing the cross-sectional returns of stocks cover a large part of the financial econometrics literature. In 

2016, an article criticizing the research methods utilized in this field was published by Harvey, Liu and Zhu. They 

highlighted that because the sample used to identify factors related to cross-sectional returns is almost always the U.S. 

stock market, the same sample was employed to test their hypothesis regarding possible factors. This approach leads to 

the problem of multiple testing, resulting in many false positive factors. This article identified 314 factors affecting 

cross-sectional returns and sparked a new discussion on the methods used in financial econometrics (Harvey, Liu, & 

Zhu, 2016).  

Another discussion concerning the use of p-values predominant statistics and its adjacent fields, such as biology or 

psychology. In recent years, this discussion came to the domain of econometrics (Harvey, 2017). 

A proposed solution was to adjust the p-values to correct the shift of thresholds caused by multiple testing such as 

Bonferroni-Holm or Benjamini-Hochberg corrections. These methods require the overall number of performed tests to 

correctly adjust the p-values. As outlined in the above mentioned 2016 article this number can only be estimated. By 

assuming that the number of significant and published factors is equal to the number of tested factors, they calculated a 

lower bound for the t-statistic. The correct critical value for a correct specified t-test at a 5 percent level of significance 

is to be 3.78 for a new factor to be published prior to 2012 (Harvey et al., 2016). 

Assuming that the number of tested factors follows a linear growth path, it is expected for a statistically significant 

factor to have a t-statistic of at least 4.00 in 2032. As there is a strong publication bias for significant values it is 

estimated that 71 percent of all possible factors are not published. Hence, the true corrected critical values are higher 

than the above-stated numbers (Harvey et al., 2016). 

Another caveat applying statistical tests with corrected values is that multiple test corrections are too conservative and 

have low statistical power (Emmert-Streib & Dehmer, 2019). 

This study applies decision trees, a non-parametric approach, to the problem of identifying relevant factors affecting 

cross-sectional returns. With the rise of machine learning techniques utilized in almost all areas of science, the decision 

tree approach has come into focus of (Mullainathan & Spiess, 2017; Varian, 2014). 

Decision trees have a hierarchical structure and therefore possess the ability to assess the importance and relevance of a 

variable, or in this case, a factor on cross-sectional returns. The algorithm employed to build the decision trees is the 

classification and regression tree algorithm (CART), published in 1984. This method stems from the field of machine 

learning and is widely employed to predict discrete (classification) and continuous outcomes (regression). Unlike other 



http://aef.redfame.com                   Applied Economics and Finance                        Vol. 10, No. 4; 2023 

15 

 

machine learning algorithms it is not a black box and thus can be used for structural analysis of the underlying sample 

(Breiman, Friedman, Olsen, & Stone, 1984). 

Decision trees have seen limited use in financial econometrics. When utilized as a multivariate sort, they are can display 

interaction effects (Moritz & Zimmermann, 2016). A similar approach using regression trees to identify the factors 

influencing cross-sectional returns was performed by (Coqueret & Guida, 2018), but they focused solely on regression 

trees. Both of the above articles find the dominance of momentum based factors and the possibility of mapping complex 

relationships with decision trees. A more recent approach has focused on the implementation of more economic 

guidance into regression trees (He, Cong, Feng, & He, 2021). As regression trees only provide a piecewise 

approximation of the range of possible values, we will instead focus on returns above average. Hence, classification 

trees can be used. This study adds to the existing literature by comparing the performance of regression models to the 

performance of decision trees when used for structural analysis. 

The application of CARTs is reviewed with a focus on the possibility of time-variable coefficients. The problems of 

dynamic coefficients examining cross-sectional returns have been studied for some time  (Jagannathan & Wang, 1996). 

This study is primarily concerned with the time variation of the importance of variables over time. A similar study has 

been published but with a strong focus on the slopes of the coefficients (Lewellen, 2015). 

The use of machine learning in finance garnered much attention in recent years, with numerous publications concerned 

with the predictive power of machine learning models (Bryzgalova, Pelger, & Zhu, 2019; Gu, Kelly, & Xiu, 2020). The 

task of identifying factors impacting cross-sectional returns has not been in the focus of recent research in this field. 

Only one article titled ”Shrinking the cross-section”  by (Kozak, Nagel, & Santosh, 2017) has been published but its 

authors  are very skeptical the possibility of identifying such factors. These results can be confirmed. Another recent 

approach is the implementation of news-based and sentiment-based features (Zhu, Wu, & Wells, 2023).   

In this article, CARTs will be employed in a classification role to determine the factors on above-average returns and in 

a regression role to determine the factors that influence returns. First, we provide a literature review on training and 

interpretation of CARTs and a comparison with the standard regression models such as ordinary least squares 

(OLS)-”like” and logit-regressions. This step is followed by an application to determine how CARTs behave in 

financial econometrics and how the results fit the financial theory. 

2. Applied Methods and Properties 

2.1 Classification and Regression Trees 

CARTs are hierarchical and non-parametric models stemming from machine-learning. As trees do not estimate the 

parameters of an assumed data-generating process but derive a set of rules for splitting a sample, the machine-learning 

term “training” is more appropriate than the term “estimating” used in econometrics as the input space represented by 

the sample is divided into local regions. Dividing the sample  is done by a function with the following form: 

           (1) 

The form of   and the process of finding the relationship between the endogenous variable    and the vector of 

exogenous variables     is described in the following. The necessity and choice of the stopping criterion   is 

explained in chapter 2.2. This function can be used for classification,    is denoted as      If used for a regression,    

is denoted as       In a classification setting, with a sample containing         classes, the sample is divided into 

subsamples with only one class. In a regression setting, the sample is divided into subsamples with observations that 

deviate less from the arithmetic mean of the subsample. The sample is organized into a dependent variable   and 

independent variables    with            . This sample contains            observations. Exogenous variables are 

used to divide the heterogeneous set of endogenous variables into homogeneous subsets. The partition is achieved by a 

set of test functions        housed in the nodes    with             and   being the total number of nodes. 

The test function is          , where   is the split point and      .   is the set of all possible splits. The first 

node contains the first test function        and is called the root. Here a binary split is performed, and the sample is 

split into two sub-samples by checking each observation of   . At any node    a part of the sample is sent to the right 

branch leading to the next node on the right with proportion    and to the left branch with proportion   . The next two 

nodes contain the test functions        and       . This process is repeated until the stopping criterion is satisfied. 

The last nodes are called endnodes or leaves. The training process is divided into two parts. The first part is concerned 

finding the optimal split point    at the nodes, a node   with its optimal split point    assigned is denoted   . The 

second part involves setting the correct stopping criterion. In particular the second part is crucial and will be discussed 

in depth later. To locate the optimal split, the CART-algorithm utilizes different metrics depending on whether it is a 

classification or a regression setting. The goal of the splitting process is to maximize the decrease in the impurity of the 

observations in the next two following nodes (Breiman et al., 1984).     
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In a classification setting,   is chosen to maximise the decrease of the Gini impurity         of the following 

sub-samples, with the Gini impurity defined as         ∑   
  

    of the following sub-samples. Notably,    is the 

share of class   in node  , and the next two nodes are called     and   . In a regression setting   is chosen to 

minimize the sum of squared residuals in the next two following nodes. In both cases an exhaustive search is performed 

over all variables and possible split points (Breiman et al., 1984). 

2.2 Stopping Criterion 

The need for a stopping criterion arises in both applications of trees (i.e., structural analysis and prediction) from the 

complexity of a fully grown tree. In a prediction application the bias-variance trade-off leads to a large out-of-sample 

error. When utilizing a tree for structural analysis, the problem is that the algorithm splits the sample until only one 

element in each leave remains. This mechanism leads to as many paths as there are observations and makes aggregate 

results or a generalized conclusion impossible. A fully grown tree has a small in-sample prediction bias because the tree 

is very fine and perfectly splits the training sample. However, the variance component of the error is very high, as the 

tree cannot account for variance in out-of-sample observations (Hastie, Friedman, & Tisbshirani, 2017). 

This issue is alleviated by employing a stopping criterion to limit tree growth, reducing tree growth (i.e., pruning). 

Pruning can be divided into pre- and post-pruning. The former involves choosing a certain threshold to limit the tree 

growth (e.g., a minimum sub-sample size). The latter allows the tree to grow to its full size and is then pruned. The 

CART algorithm uses cost-complexity-pruning. Here, the following cost function is used: 

                (3) 

     Is an error measurement of a tree with   nodes in total, and α is the complexity parameter, which is used to 

determine the optimal trade-off. Here, the out-of-sample misclassification rate or mean squared error is used as error 

measure, and complexity is defined as the product of the complexity parameter and the number of nodes  . The higher 

α, the less complex the tree, and vice versa. Notably, the optimal α is determined by  -fold-cross-validation (Hastie et 

al., 2017). 

When employing  -fold-cross-validation, the sample is split into   sub-samples, where     sub-samples are 

employed to train the algorithm and the remaining sub-sample is used to test it. This process is repeated  -times, and 

the results are aggregated. As this process involves randomness, it is problematic to utilize it in small samples. Here, it 

can lead to non-optimal stopping criteria and non-replicability (Isaksson, Wallman, Göransson, & Gustafsson, 2008). 

Cost-complexity pruning provides an advantage as it uses a non-arbitrary criterion as opposed to an arbitrary threshold 

set by the researcher. As our approach is more interested in the structure of the sample than the development of 

prediction rules, both approaches will be employed. 

2.3 Interpretation of CARTs 

As the arithmetic mean is an unbiased estimator for the expectation of a random variable 

it is also an unbiased estimator of the success probability of a binary random variable. In the root node of a CART, this 

arithmetic mean is an unconditional expectation or probability. In the next node, it becomes conditional a value, as the 

full sample from the root is split into sub-samples. The means of the endogenous variable in these sub-samples are 

conditioned on the values of the split in the node above. Further down the decision tree the sub-samples become finer as 

more information is processed. Hence, the conditional probabilities and expectations have become more complex. 

When performing a regression, this leads to a piecewise approximation of the range of possible values, where the pieces 

can be examined by their conditions. When performing a classification the leaves are unbiased estimators of the 

respective conditional probabilities. In both cases a set of IF-THEN rules can be derived from the leaves (Alpaydin, 

2014). 

As the variables in the nodes are chosen to minimize the sum of squared residuals or to maximize the Gini impurity, the 

earlier a variable is chosen the more important it is. Variable importance is quantified by using surrogate splits. A 

surrogate split     is defined by its ability to act in the same manner as the optimal split   . Therefore, two conditions 

must be met (Breiman et al., 1984). The first condition is: 

    
             (     

             
      )  

(4) 

Here      
       is the probability that an observation is assigned to the left node by the optimal split    and a split at 

any   . The behavior of      
       corresponds to the right node. The surrogate split is the split of variable    which 
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acts most similarly to     (Breiman et al., 1984). The second condition is: 

 i ( 
 
   

 
)  (   (       ))   (5) 

This condition ensures that the surrogate split is of any value in the prediction of the outcome variable (Breiman et al., 

1984). With these two conditions satisfied, the variable importance measure can be calculated as follows: 

   xi   ∑    

   

         
(6) 

The variable importance        is the sum of its possibilities to reduce the Gini impurity, respectively the sum of 

squared residuals. The possibility of a variable for reduction is the difference between optimal split and surrogate split 

          . If no split satisfies the above conditions, then this possibility becomes zero (Breiman et al., 1984). 

2.4 Comparison to Parametric Regression Methods 

The differences between CARTs and parametric regression techniques can be categorized into two parts. The first part 

is the performance and ability to capture the sample’s structure. The second part is the interpretation of the resulting 

model. 

Regarding the comparison of performance, a large-scale study revealed that CARTs outperformed logistic regressions 

in larger data sets. This notion holds, particularly when the signal separability is high (Perlich, Provost, & Simonoff, 

2003). Compared to other classification algorithms, such as artificial neural nets or the random-forest-algorithm, 

CARTs and logit regressions offer a lower performance as a trade-off for interpretability (Caruana & Niculescu-Mizil, 

2006). 

In general, it is expected that regression trees perform worse than linear regression models. This expectation is valid 

because regression trees only offer a piecewise approximation of the range of possible values. Additionally linear 

regression models are well understood and sophisticated with respect to their ability to model individual and time 

effects. Regression trees are only expected to perform better when the advantages are offset by their ability to model 

nonlinear effects. This notion prove to be relevant case in econometrics, as shown by a study on the productivity of 

workers (Markham, 2011). 

Another domain wherein CARTs can fit the data very well is in the presence of interaction effects. These are 

incorporated into the IF-THEN structure inherent to decision trees. In a parametric regression, it is assumed that all 

variables have the same influence. Therefore interaction effects have to be explicitly specified (James, Witten, Hastie, 

& Tibshirani, 2021; Long, Griffith, Selker, & D'Agostino, 1993). 

Parametric regression models and tree-based models also differ in their ability to handle missing data. If the training 

sample contains missing data, the observations with missing values for a specific variable are not used to calculate the 

splits for this variable. These observations can still be used to calculate splits on other variables. This procedure 

alleviates the problems associated with missing data. When the decision tree is used for prediction, new observations 

with missing values can still be used. Surrogate splits can be used at splits where a missing value is needed (Breiman et 

al., 1984). In addition to the variable importance mentioned in the above chapter, tree-like models are easy to interpret 

and can be employed to formulate an easily applicable guideline for decision-making because of to their graphical 

representation (James et al., 2021). An example is the reaction to a possible heart attack in an emergency room. A quick 

assessment of a logistic regression is not possible by readers not skilled in statistics and/or econometrics. A tree model 

can be put into an easy-understandable flow chart, as described by (Tsien, L., Christine, Fraser, F.S., Hamisch, & Long, 

J., William, 1998). With a logit regression the marginal effects of a variable depend on the level of other variables, 

leading to wrong interpretations of scientific studies when presented to the general public (Hoetker, 2007). This 

problem is alleviated in an OLS regression unless there are interaction terms or the variables have been scaled to allow 

for the coefficients to be in the same range.  

2.5 Parametric Regression Models 

In most publications on cross-sectional returns a Fama-MacBeth regression is used. This approach can result in biased 

estimates of standard errors due to disregard for firm effects (Canitz et al., 2017; Hoechle, Schmid, & Zimmermann, 

2018). In this study a panel regression with fixed effects is used to account for time and firm effects. 

                    (7) 

The effects of each firm are considered by   , a firm specific and constant term.     is the endogenous variable of 

observation i in period t. The vector     contains the exogenous variables for observation i in period t and     is the 
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associated shock. The vector   contains the parameters to be estimated. As this article also employs OLS-regressions 

for the single period case, both methods will be summed up as OLS-derivatives.  

In the classification setting a binary choice model for panel data with fixed effects is used, namely the conditional logit 

estimator (Chamberlain, 1980).  

      
           

   
    

      
   (8) 

Here the probability of a binary variable     
 being equal to one is the cumulated distribution function of the logistic 

distribution g(), whose arguments are the features of observation i in period t. The parameters denoted with a * have an 

analogue meaning to the ones in equation (7). 

In the single-period case a standard logit-model is utilized. This article will use the general term “logit-regressions” for 

both types. 

3. Empirical Analysis 

The setting to test the change in capital markets over time stems from the article ”Dissecting Anomalies” by (Fama & 

French, 2008). In this article seven factors on cross-sectional returns and their characteristics across different levels of 

market capitalization were studied. These seven potential factors concerning cross-sectional returns were chosen here 

because they are well known and understood in the literature. In this article the objects of the investigation will not be 

different levels of market capitalization but the time dimension and its influence on factors on cross-sectional returns. 

Thus, only stocks with a high market capitalization are considered (i.e., the constituents of the S&P 500 from 1999 to 

2019). Overall, two periods are needed to calculate the variables, and one period is set aside for prediction, leaving 17 

periods for training. Financial institutions were not considered. To determine the factors impacting cross-sectional 

returns, a fixed-effects regression and a regression tree are used. To make use of the possibility to fit a classification tree 

to data with binary outcomes, the factors on above-average returns will also be examined. For this purpose, a new 

dependent variable    
  it is defined as: 

y
i 
  {

   i  y
i 
 y

 ̅

       
 

(9) 

Here,   ̅ is the average return of all stocks in the sample in month   of year  . The variables used stem from (Fama 

& French, 2008), together with their calculation and scaling. For a better comparison between parametric regressions 

and CARTs, the variables will be scaled to allow for “nice”-coefficients (i.e., in the same range). This step is not 

necessary for CARTs. 

The data source was Thomson Reuters Datastream. The returns are calculated from month      to month  . 
Momentum is updated each month. All other variables are updated in June of each year. The following exogenous 

variables were employed: 

 momentum (mom), calculated from month       to      

 market capitalization (mc), stocks outstanding at the beginning of year    the times stock price at the 

beginning of year  , logarithmized 

 book-to-market ratio (btmr), book value at the beginning of year   is total assets minus total liabilities, 

divided by market capitalization, logarithmized 

 net stock issues (ns), common stock outstanding at the beginning of year   minus common stock outstanding 

at the beginning of year     , logarithmized 

 accruals (acc), difference in working capital between years   and      , working capital is calculated as 

current assets minus current liabilities, logarithmized 

 change in assets (chA), total assets minus total liabilities at the beginning of year   minus total assets minus 

total liabilities in year     , logarithmized 

 profitability (ptb), income in year      divided by the total assets in the respective year 

 

Summary statistics for all variables can be found in Table I in the Appendix. These seven variables were used to train 

the following models. 

Classification trees: 

                                                       (10) 

Regression trees: 
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                                                        (12) 

In every tree model trained, the stopping criterion   was determined by 10-fold-cross-validation. 

OLS-derivatives: 

                                              

                          

(13) 

Logit-regressions: 

      
                                                  

                                                                              
      

 ) 

(14) 

Notably, two scenarios were utilized to determine the time variability. First, the data from       was used to train the 

aforementioned models. Thereafter, this model will be used to predict the returns in the next period  . To compare 

parametric regression models and decision trees in their ability to fit the data, the out-of-sample error rate is calculated. 

The error measure in the classification setting is the misclassification rate (MCR), and in the regression part, the mean 

squared error (MSE) is used. The forecast horizon is always one month; here, we follow the forecasting framework 

proposed by (Dong, Li, Rapach, & Zhou, 2022). Additionally, the absolute values of the t-statistics and variable 

importance scores are calculated. Now the training sample is expanded with the data from      and the process is 

repeated. In this backtesting approach further sub samples are added until all periods from       to        are used. 

If t-values and variable importance scores converge, larger datasets are more useful, and there are no changes in the 

factors impacting returns over time. The same holds for the development of error measures with larger samples sizes. If 

the forecasting error grows larger with more periods added, different periods distort the estimation owing to shifts in the 

data-generating process. Second, a rolling window approach where each period from       till        was used for 

training and forecasting of the next period. During stable conditions in financial markets, the factors on returns would 

be constant or slowly changing. In both settings, t-statistics, variable importance scores, and error measurements are 

displayed as time series. 

4. Results   

The absolute of the test statistic of the t-test     for the estimated effects in the setup with backtesting is plotted in 

figure 1. The left side denotes the plot for the fixed-effect regressions and the right side for the fixed effect logit 

regressions. In both cases there is only the t-statistic for momentum available in t = 1, because all other factors 

influencing cross sectional returns are time-invariant by design. The sample size grows from 5988 observations in 

period      to 70795 observations in period       . The number of observations does not grow at a constant pace 

because the number of companies leaving and entering the S&P 500 and their respective fields changes every year. 

 
Figure 1. Z-score of parametric regressions with backtesting 

Description: Left side: fixed effects regressions, right side: fixed effects logit regressions, y-axis = |z|, x-axis = number 

of periods included, black = momentum, red = accruals, green =market capitalization, blue = book-to-market ratio, 

turquoise = net stock issues, purple = change in assets, yellow = profitability 

 

Looking at     with a 5% significance level it is evident that only market capitalization is the factor that always has an 

effect significantly different from zero. This notion holds for the regression and classification settings. The momentum 

also shows a similar development in both cases. Unlike mc the significance of its effect is conditional on the periods 
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included. Change in assets and net stock issues have similar trajectories. Both have a declining    -value in the 

regression setting. In the classification setting the trend is inconclusive. Here chA sometimes has a coefficient 

significantly different from zero, whereas ns has not. 

The R2 in the fixed effect regressions is near zero for      to      , rising sharply from 0.0035 to 0.0141 in 

periods      to     . The same pattern is shown for the McFadden-pseudo-   calculated from the fixed-effect 

logit regressions. This notion leads to the conclusion that the coefficients, and therefore the data-generating process, 

change over time. When trying to fit time-constant coefficients to data containing 10 years of data, one achieves a worse 

fit than when only two years of data are utilized. This aspect, in tandem with the change in value and significance of 

coefficients, shows the time variability of factors on cross-sectional returns. Looking at Figure 4, the variability of the 

    of the single-period regressions can still be observed. Some minor co-movements between the values of the OLS 

regressions and the logit regressions can be identified, (e.g., the spike of the     of the influence of accruals in period 

    ). 

 

Figure 1. Variable Importance score of CARTs with backtesting 

Description: Left side: regression trees, right side: classification trees, y-axis = variable importance, x-axis = number of 

periods included, black = momentum, red = accruals, green =market capitalization, blue = book-to-market ratio, 

turquoise = net stock issues, purple = change in assets, yellow = profitability 

While     in Figure 1 shows a lot of dependence on the included periods, the variable importance metric in the 

decision trees in Figure 2 does not. In both cases, momentum is the most important variable, with a variable importance 

score of approximately 40. All other variables have a variable importance score of around 15. In the regression and the 

classification setting, change in assets is the least important one.  As shown in Figure 5 in the Appendix the same 

behavior of the |z|-score can be seen if the regressions are performed with only one period. Figure 5 also shows large 

changes in the |z|-score during the periods affected by the 2007-2008 financial crisis. This is in line with the results of 

Kozlowski and Lytle (2023), who showed the effect of recessions on the January anomaly. 

 Figure 6 illustrates that the variable importance metric of CARTs also behaves the same if the trees are trained with a 

single period. 

There were some minor variations. However, as shown in Figure 2, the overall picture does not change. The dominance 

of return- or momentum-based predictors in variable importance has been confirmed in all studies using CART 

(Coqueret & Guida, 2018; Moritz & Zimmermann, 2016). As momentum is calculated from the past returns, its high 

importance supports the representation of returns with a time series model (e.g., an autoregressive process). 

Unpruned trees were used to calculate the variable importance scores, this is due to not being able to calculate a variable 

importance score in every case otherwise. In all cases using a regression tree no split is left after pruning, leading to 

remarkable conclusions regarding the fit. 

In Figure 3, the MCR and MSE of both methods are plotted. On the left, the regression tree has a lower MSE than the 

fixed-effect regression in every period. The spike of the fixed effects regressions MSE when only      and      

are included is probably an anomaly.  Nonetheless, the stump of the regression trees, using only the arithmetic mean of 

the last period as the predicted value for the next period, always has more predictive power than OLS derivatives. Thus, 

their usefulness for the future policy or investment decisions is disputed. The result of the parametric methods are 

consistent with the known phenomenon of ”pockets of predictability” in stock markets (Farmer, Schmidt, & 

Timmermann, 2023; Timmermann, 2008).  CARTs do not show these pockets of predictability, which may be due to 

their less rigid structure in comparison to parametric methods. Hence, they can better adapt to changes in the data. 

Figure 7 in the Appendix portrays a similar picture for the MCR if only one period is used. Specifically, the MSE is 

more volatile when only one period is used. The first large spike in Figure 7 corresponds to the financial crisis in 2008 

and its aftermath. The reasons for the second spike in Figure 7 and its slow ascent and rapid descent are unclear. 
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Figure 2. Precision metrics backtesting 

Description: Left side: MSE, right side: MCR, y-axis = MSE respectively MCR, x-axis =periods included, black = trees, 

red = regressions 

Figure 4 shows the classification trees with the lowest misclassification rate. The left tree was grown with all periods 

from      to     . The tree on the right was grown with only with from the period     . The MCR of the left tree 

is 0.448, and the MCR of the right tree is 0.437. The MCR of the corresponding logit models are 0.463 and 0.422 

respectively. In each node, the first number is the prevalent outcome, the second number is the probability of success, 

and the third is the size of the subsample in the node as a percentage of the full sample. The variable of the first split 

point was identical in both trees. In both cases, momentum is used. However, the direction of the split is different.  

 

Figure 3. Pruned classification trees 

Description: Left side: classification tree with 8 periods, right side: classification tree with one period. In the right tree 

momentum above 0.47 has a negative influence on the success probability, while on the left tree a momentum above 

− .22 ha  a   ga iv  i   u  ce. Although the importance of the variables is more or less constant, the influence of the 

variables on the outcome changes over time. 

An indication of the usefulness of the IF-ELSE structure of decision trees is the behavior of dAA in the left tree. In the 

left tree,                                                             , but for a different range 

of momentum                                                               . This notion is 

equivalent to a parameter change in a parametric regression depending on the covariates values. A similar behavior of  

dAA and ns can also be found in the left tree. This result is interesting as it confirms the thesis of time varying 

coefficients. The importance of variables does not change, but the split points do. 

The leaves of both trees contained either large subsamples or very small subsamples. In both trees, the splits lead to a 

relatively small sample being split from a large sample or a small sample being split into two smaller samples. In the 

left example, the two largest leaves contain 87 percent of the original sample, and those leaves have a success 

probability of less than 0.02, away from 0.5. Only some of the small leaves can clearly distinguish observations 

belonging to the group with above-average returns or the group with below-average returns. The leaves in the right tree 

are more equally sized, but the success probability of the two largest leaves does not deviate more than 0.05 from 0.5. 

Therefore, decision trees cannot account for a large part of the variation. This may equivalent to the low R2 observed in 

the literature on cross-sectional returns. 
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5. Discussion 

It can be concluded that the application of CARTs in the identification of cross-sectional returns is problematic. 

Especially when used as regression trees to determine factors influencing cross-sectional returns they cannot detect any 

structure and cannot split the sample. OLS derivatives can detect structures in the sample. A comparison of the 

predictive power of regression trees and OLS derivatives show a higher error for OLS derivatives. This error is a clear 

indication of overfitting. The best predictor of future stock returns is the mean of all returns from the last period. To 

obtain a reduction in forecasting error, it is imperative to employ more powerful methods such as artificial neural nets 

or the random forest algorithm. Both methods are regarded as black boxes and are not suitable for structural inference. 

When using classification trees to identify influencing factors in relation to the trend, decision trees can split the sample. 

Comparing the predictive power of CARTs and logit regressions, the results are inconclusive. Figures 3 and 7 are 

showing that the results of CARTs are often worse than the ones of the logit regressions. Only in some cases can 

CARTs have a lower prediction error than logit regression. As in the regression case the problem may be with the low 

signal separability. A possible explanation is that the interaction effects are not that important. Concluding on the 

structural analysis, the dominance of momentum is an influencing factor of returns and the trend of returns. This finding 

is in consistent with the concept of stock returns as autoregressive processes. This study also confirms the high level of 

time-variability in stock markets.  Figures 1 and 6 specify the change in structure in the stock market over time. This 

problem cannot be alleviated using larger samples. Therefore, further research should include a broader sample 

covering the whole stock market and more possible factors on cross-sectional returns. Another possibility would be the 

grouping by industry as different industries have shown different behavior related to features (Zhu et al., 2023).  The 

use of CARTs in econometrics is promising, as it offers new insights into the structure. Further development of 

guidelines and procedures is thus needed. 
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Appendix 

Table 1. Summary statistics  

Variables 1st Quantile Median Mean  3rd Quantile 

returns  0.041 0.008 0.0034 0.057 
mom -0.084 0.061 0.088 0.21 
acc -21.7 0.001 19.60 20.2 
mc 10.68 12.68 13.12 16.00 
btm 0.001 5.42 30.64 0.024 
ns -0.043 0.00061 0.029 0.12 
dAA -21.7 0.037 0.052 20.20 
btmr -0.026 0.064 20.20 0.148 

 Description: Summary Statistics, Datasource: Thomson Reuters Datastream 

 

 

 

 

 

Figure 5. Z-score of parametric regressions with rolling window 
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Description:  Right side: fixed effects regressions, right side: fixed effects logit regressions, y-axis = |z|, x-axis = 

period used, black = momentum, red = accruals, green =market capitalization, blue = book-to-market ratio, turquoise 

= net stock issues, purple = change in assets, yellow = profitability 

 

Figure 6. Variable Importance score of CARTs with backtesting 

Description: Left side: regression trees, right side: classification trees, y-axis = variable importance, x-axis =  period 

used, black = momentum, red = accruals, green =market capitalization, blue = book-to-market ratio, turquoise = net 

stock issues, purple = change in assets, yellow = profitability 

 

Figure 7. Precision metrics rolling window 

Description: Left side: MSE, right side: MCR, y-axis = MSE respectively MCR, x-axis = period used, black = trees, red 

= regressions 

 


