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Abstract 

The COVID-19 pandemic has wholly disrupted the operation of our societies. Its elusive transmission process, 

characterized by an unusually long incubation period and a high contagion capacity, has forced many countries to take 

quarantine and social isolation measures that conspire against national economies' performance. This situation confronts 

decision-makers in different countries with the alternative of reopening the economies, thus facing the unpredictable 

cost of a rebound of the infection. This work tries to offer an initial theoretical framework to handle this alternative. 

Keywords: dynamic optimization, maximum principle, post pandemic opening 

1. Introduction 

After several months of quarantine and social isolation, the national governments of the different countries face the 

inevitable decision to reactivate their economies. This decision is accompanied by the almost certain rebound of the 

epidemic, since, in the absence of social isolation, the number of infections will surely skyrocket again. In the execution 

of this process, there are two evident extremes:  

A restart of economic activities in all their extent will cause a strong rebound of the epidemic with the expected death of 

many human beings. 

Continuing for an extended period of time, quarantine will result in an economic contraction with unpredictable 

consequences.  

Therefore, the restart of the economies and the rebound of the epidemic are in essence, two contradictory forces. The 

search for a strategy that tries to manage the unwanted effects optimally is necessary.  

In the pages that follow, a functional is constructed, subject to certain dynamic restrictions that aim to capture the 

essential aspects of the process of economic restart under the preexistence of the epidemic. The method used to solve 

the problem has been the Pontryaguin Maximum Principle. Once the conditions that this principle prescribes have been 

established, a system of ordinary differential equations (7) and an equation for the control (6) are obtained that allow to 

maximize the economic performance subject to the restrictions imposed by the contagion. Conditions to avoid the 

rebound of the epidemic are also analyzed in the text. 

2. Method 

2.1 Definition of Variables and Problem Statement 

First, the following functions are defined: 

𝑎𝜏(𝑡): The number of asymptomatic people in the instant of time t belonging to the age range that makes up the 

economically active population, but with age less than or equal to τ which are allowed to go out to work. Decision-makers 

may vary the parameter τ as the epidemiological situation changes. The idea of initially restricting through age to people 

who are allowed to go out to work is due to the virus's well-known characteristic of being more severe with the elderly. 

This group contains the susceptible, latent, (that is when the individual has been infected, but does not yet show symptoms 

or is not still capable of infecting) and asymptomatic infectious, all of them of age less than or equal to 𝜏. Immediately a 

member of this group is detected as infected, it is quarantined. In all that follows, governments are supposed to be in a 
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position to exercise this measure. Notice that the function 𝑎𝜏(𝑡) qualifies as a control function because it has the 

following two properties. First, it is something that is subject to the discretionary choice of decision-makers. Second, the 

choice of 𝑎𝜏(𝑡) affects the other variables of the problem defined below, as will be seen later. 

𝑞(𝑡): People in quarantine at the instant of time 𝑡. This group includes children, young people younger than the minimum 

age for working, people older than τ, and anyone who has been detected infected with severity low enough to pass the 

disease at home. In short, all the people who must stay at home. 

ℎ(𝑡): All hospitalized people who are not in intensive care units at the instant of time 𝑡. 

𝑢(𝑡): All people who are in intensive care units in the instant of time 𝑡. 

The problem can be stated as follows: 

Find a control function 𝑎𝜏(𝑡) that maximizes the functional: 

               max𝑎𝜏 ∫ [𝐴𝑎𝜏
𝛼(𝑡) − 𝛽𝑞𝑞(𝑡) − 𝛽ℎℎ(𝑡) − 𝛽𝑢𝑢(𝑡)]𝑒

−𝑟𝑡𝑑𝑡
𝑇

0
                          (1) 

subject to the conditions:  

             

{
 
 

 
 
𝑑𝑞(𝑡)

𝑑𝑡
= 𝑚(𝑞(𝑡), 𝑎𝜏(𝑡)) − 𝜈𝑞ℎ𝑞(𝑡)

𝑑ℎ(𝑡)

𝑑𝑡
= 𝜈𝑞ℎ𝑞(𝑡) − 𝜈ℎ𝑢ℎ(𝑡)

𝑑𝑢(𝑡)

𝑑𝑡
= 𝜈ℎ𝑢ℎ(𝑡) − 𝜈𝑢∞𝑢(𝑡)

                                      (2)  

where: 

𝐴𝑎𝜏
𝛼(𝑡): It is the aggregate production function [1], which we assume is of the Cobb-Douglas type and depends only on 

labor. This last assumption is due to the supposition that in the period in which the reopening of the economy is going to 

take place, the depreciation of physical capital and its variation is negligible. Therefore, the aggregate production function 

depends only on labor. Constant A contains a factor to transform the people hired into working hours according to the 

duration of the current working day. Obviously, 0 < 𝛼 < 1. 

𝛽𝑞: The average social cost of one day of quarantine per person. This coefficient considers the loss of classes or the cost of 

receiving them online, the value of hours of work lost by adults due to childcare, the amount of work lost by quarantined 

persons who remain at home, etc. 

𝛽ℎ: Cost of one day of hospitalization per person, for patients not treated in intensive care units. 

𝛽𝑢: Cost of one day of treatment per person in an intensive care unit.  

𝑟: Interest rate used to bring the earnings to present value. 

𝑚(𝑞(𝑡) , 𝑎𝜏(𝑡)): Rate of increase of 𝑞(𝑡) because of the interaction between the infected of the group 𝑎𝜏  and the 

quarantines, as well as among the members of the group 𝑎𝜏. We will assume that this function holds the following 

conditions: 

𝜕𝑚

𝜕𝑎𝜏
> 0 ;

𝜕2𝑚

𝜕𝑎𝜏
2
> 0 ;

𝜕𝑚

𝜕𝑞
> 0 ;

𝜕2𝑚

𝜕𝑎𝜏
2
> 0 

𝜈𝑞ℎ: Fraction of quarantines who must be hospitalized. 

𝜈ℎ𝑢: Fraction of hospitalized patients who must be taken to an intensive care unit. 

𝜈𝑢∞: Fraction of people who are cared for in intensive care units and who leave them for recovery or death.The initial 

conditions for 𝑞(𝑡), ℎ(𝑡), 𝑢(𝑡) and 𝑎𝜏(𝑡) should be taken the day of the start of the reopening process. 

3. Results. 

3.1 Pontryaguin Maximum Principle and the Hamiltonian of the problem. 

The Hamiltonian of the problem can be written as follows: 

ℋ(𝑎𝜏, 𝑞, ℎ, 𝑢, 𝜆1, 𝜆2, 𝜆3 ) = [𝐴𝑎𝜏
𝛼 − 𝛽𝑞𝑞 − 𝛽ℎℎ − 𝛽𝑢𝑢]𝑒

−𝑟𝑡 → 

                                              → −𝜆1[𝑚(𝑞, 𝑎𝜏) − 𝜈𝑞ℎ𝑞] − 𝜆2[𝜈𝑞ℎ𝑞 − 𝜈ℎ𝑢ℎ] − 𝜆3,𝜈ℎ𝑢ℎ − 𝜈𝑢∞𝑢- 

The minus sign in front of the functions 𝜆𝑖(𝑡) it is to emphasize that these shadow prices are costs (see [2], pp. 206-207 

or [4], p. 118). Therefore, the functions 𝜆𝑖(𝑡) will be assumed positive. 
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The formulation of the Pontryaguin Maximum Principle can be seen in many places (see [3], pp. 218-221). Let us now 

consider the conditions that the functions involved must hold in the case of constituting an extreme. 

I) The function 𝑎𝜏(𝑡) must be a maximum of the Hamiltonian ℋ: 

             
 ℋ

 𝑎𝜏
= 0 ;

𝛼 

𝑎𝜏
   (𝑡)

𝑒−𝑟𝑡 − 𝜆1(𝑡)
  (𝑞(𝑡),𝑎𝜏(𝑡))

 𝑎𝜏
= 0                             (3) 

II)  If we denote by: 

             𝜆 = (𝜆1, 𝜆2, 𝜆3)
𝑇 ; �⃗� = (𝑞, ℎ, 𝑢)𝑇                                   (4) 

then: 

       
𝑑�⃗⃗⃗�

𝑑𝑡
= −

 ℋ

 �⃗�
                                                   (5) 

3.2 The Resolution of the Necessary Conditions of Extreme 

 Equation (5) is a system of equations that can be written as: 

{
 
 

 
 
𝑑𝜆1
𝑑𝑡

= [
𝜕𝑚

𝜕𝑞
− 𝜈𝑞ℎ] 𝜆1 + 𝜈𝑞ℎ𝜆2 + 𝛽𝑞𝑒

−𝑟𝑡

𝑑𝜆2
𝑑𝑡

= −𝜈ℎ𝑢𝜆2 + 𝜈ℎ𝑢𝜆3 + 𝛽ℎ𝑒
−𝑟𝑡

𝑑𝜆3
𝑑𝑡

= −𝜈𝑢∞𝜆3 + 𝛽𝑢𝑒
−𝑟𝑡

 

The last two equations of the system are independent of the first and can be solved separately: 

𝑑

𝑑𝑡
[
𝜆2
𝜆3
] = 0

−𝜈ℎ𝑢 𝜈ℎ𝑢
0 −𝜈𝑢∞

1 [
𝜆2
𝜆3
] + [

𝛽ℎ
𝛽𝑢
] 𝑒−𝑟𝑡 

The characteristic polynomial of the system matrix is: 

𝑝(𝜔) = (𝜔 + 𝜈ℎ𝑢)(𝜔 + 𝜈𝑢∞) 
The eigenvalues are: 

𝜔1 = −𝜈ℎ𝑢 ; 𝜔2 = −𝜈𝑢∞ 

and the corresponding eigenvectors: 

𝜐1 = 0
1
0
1 ; 𝜐2 = 0

𝜈ℎ𝑢
𝜈ℎ𝑢 − 𝜈𝑢∞

1 

Therefore, component 𝜆2(𝑡) of the general solution of the system can be expressed as follows: 

𝜆2(𝑡) = 𝑐1𝑒
−𝜈ℎ𝑢𝑡 + 𝑐2𝑒

−𝜈𝑢∞𝑡 + 𝐵0𝑒
−𝑟𝑡 

where: 

𝐵0 = [
𝛽ℎ

𝜈ℎ𝑢 − 𝑟
+

𝛽𝑢𝜈ℎ𝑢
𝜈ℎ𝑢 − 𝜈𝑢∞

(
1

𝜈𝑢∞ − 𝑟
−

1

𝜈ℎ𝑢 − 𝑟
)] 

Returning to Equation (3): 

𝛼𝐴

𝜆1(𝑡)
𝑒−𝑟𝑡 =

𝜕𝑚

𝜕𝑎𝜏
𝑎𝜏
1−𝛼 

Since  
  

 𝑎𝜏
> 0 ;

 2 

 𝑎𝜏
2 > 0 ; 1 − 𝛼 > 0 there is a function 𝐺(𝑥, 𝑦), invertible with respect to 𝑥 such that: 

𝑎𝜏(𝑡) = 𝐺 .
𝛼 

𝜆 (𝑡)
𝑒−𝑟𝑡 , 𝑞(𝑡)/                                          (6) 

Finally, the following system of ordinary differential equations must be solved: 
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{
 
 
 

 
 
 𝑑𝜆 (𝑡)

𝑑𝑡
= *

  

 𝑎𝜏
(𝑞(𝑡), 𝐺 .

𝛼 

𝜆 (𝑡)
, 𝑞(𝑡)/)+ 𝜆(𝑡)1 + 𝐾(𝑡)

𝑑𝑞(𝑡)

𝑑𝑡
  = 𝑚(𝑞(𝑡), 𝐺 .

𝛼 

𝜆 (𝑡)
, 𝑞(𝑡)/) − 𝜈𝑞ℎ𝑞(𝑡)

𝑑ℎ(𝑡)

𝑑𝑡
  =  𝜈𝑞ℎ𝑞(𝑡) − 𝜈ℎ𝑢ℎ(𝑡)

𝑑𝑢(𝑡)

𝑑𝑡
  =  𝜈ℎ𝑢ℎ(𝑡) − 𝜈𝑢∞𝑢(𝑡)

                         (7) 

where: 

𝐾(𝑡) = 𝜈𝑞ℎ *𝑐1𝑒
−𝜈ℎ𝑢𝑡 + 𝑐2𝑒

−𝜈𝑢∞𝑡 + (𝐵0 +
𝛽𝑞
𝜈𝑞ℎ
)𝑒−𝑟𝑡+ 

Note that there are constants 𝑄, 𝜃 such that: 

|𝐾(𝑡)| ≤ 𝑄𝑒−𝜃𝑡 

In this way, the stability and asymptotic stability of the solutions of the system (7) are established from the properties of 

the associated autonomous system: 

{
 
 
 

 
 
 𝑑𝜆 (𝑡)

𝑑𝑡
= *

  

 𝑎𝜏
(𝑞(𝑡), 𝐺 .

𝛼 

𝜆 (𝑡)
, 𝑞(𝑡)/)+ 𝜆(𝑡)1

𝑑𝑞(𝑡)

𝑑𝑡
  = 𝑚(𝑞(𝑡), 𝐺 .

𝛼 

𝜆 (𝑡)
, 𝑞(𝑡)/) − 𝜈𝑞ℎ𝑞(𝑡)

𝑑ℎ(𝑡)

𝑑𝑡
  =  𝜈𝑞ℎ𝑞(𝑡) − 𝜈ℎ𝑢ℎ(𝑡)

𝑑𝑢(𝑡)

𝑑𝑡
  =  𝜈ℎ𝑢ℎ(𝑡) − 𝜈𝑢∞𝑢(𝑡)

                               (8) 

The solution of the system (7), probably obtained through numerical methods, together with the control function, obtained 

in Equation (6), should offer decision makers the guideline to follow to reopen the economies. 

3.3 Sufficient conditions for the maximum. 

Sufficient extreme conditions must be established. The Mangasarian Sufficiency Conditions will be used (for details see 

[4], p.120). To begin, note that the region: 

Ω = *(𝑞, ℎ, 𝑢, 𝑎𝜏) ∈ ℝ
4. 𝑞 ≥ 0, ℎ ≥ 0, 𝑢 ≥ 0, 𝑎𝜏 ≥ 0+ 

where the variables 𝑞, ℎ, 𝑢, 𝑎𝜏 are defined is convex. The functions in the second members of the equations of the 

system (2) are continuous, as well as their first derivatives. Functions under the integral sign within functional (1) also 

meet those conditions. Therefore, according to the Mangasarian Sufficiency Conditions quoted above it is sufficient 

verify that the Hamiltonian's Hessian matrix ℍ is negative semidefinite (see [5], pp. 511-514). The Hessian matrix has 

the form: 

ℍ = [

𝕙11 0 0 𝕙14
0 0 0 0
0 0 0 0
𝕙41 0 0 𝕙44

] 

where: 

𝕙11 =
𝜕2ℍ

𝜕𝑞2
= −𝜆1

𝜕2𝑚

𝜕𝑞2
; 𝕙14 =

𝜕2ℍ

𝜕𝑞𝜕𝑎𝜏
= −𝜆1

𝜕2𝑚

𝜕𝑞𝜕𝑎𝜏

𝕙41 = −𝜆1
𝜕2𝑚

𝜕𝑞𝜕𝑎𝜏
; 𝕙44 =

𝜕2ℍ

𝜕𝑎𝜏
2
=
𝛼(𝛼 − 1)𝐴

𝑎𝜏
2−𝛼

− 𝜆1
𝜕2𝑚

𝜕𝑎𝜏
2

 

The leading principal minors are Δ1 = −𝜆1
 2 

 𝑞2
< 0, Δ2 = 0, Δ3 = 0, Δ4 = 0. Therefore, the leading principal minors are 

alternate in sign so that the odd order ones are less than or equal to zero and the even order ones are greater than or equal 

to zero. Hence, the Hessian matrix is negative semidefinite and Hamiltonian of the problem is concave. 
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3.4 Particular Case for 𝒎(𝒒(𝒕), 𝒂𝝉(𝒕)). 

Suppose that the function 𝑚(𝑞(𝑡), 𝑎𝜏(𝑡)) has the form: 

𝑚(𝑞(𝑡), 𝑎𝜏(𝑡)) = 𝜈𝑞𝑎𝑞(𝑡)𝑎𝜏(𝑡) + 𝜈𝑎𝑎𝜏
2(𝑡) 

Note that this choice of function 𝑚(𝑞(𝑡), 𝑎𝜏(𝑡)) minimally captures the two possible contagion processes related to the 

reopening of the economy: the interaction of the members of the quarantined group with those of the group that is allowed 

to go out to work 𝜈𝑞𝑎𝑞(𝑡)𝑎𝜏(𝑡) and the contagion among the members of this latter group due to labor relations 𝜈𝑎𝑎𝜏
2(𝑡). 

In this case Equation (3) can be written as:  

𝛼𝐴

𝜆1(𝑡)
𝑒−𝑟𝑡 = 𝜈𝑞𝑎𝑞(𝑡)𝑎𝜏

1−𝛼(𝑡) + 2𝜈𝑎𝑎𝜏
2−𝛼(𝑡) 

From which can be obtained 𝑎𝜏(𝑡). 
In the following pages, a qualitative approach to the phenomenon of epidemic rebound is discussed. 

3.5 Possible Scenarios for the Rebound of the Epidemic. 

The simplest procedure to control the rebound of the epidemic is to monitor the values of the function: 

𝑑(𝑡) = 𝑚(𝑞(𝑡), 𝐺 (
𝛼𝐴

𝜆1(𝑡)
, 𝑞(𝑡))) − 𝜈𝑞ℎ𝑞(𝑡) 

calculated on the path obtained through equation (6) and the system (7). Note that 𝑑(𝑡) is the second member of the 

differential equation in the system (2) corresponding to quarantines. As long as 𝑑(𝑡) < 0 the number of people in 

quarantine will be decreasing.  But every time 𝑑(𝑡) → 0−, this should be an early warning to decision makers that a new 

rebound of epidemic is coming. 

One of the possible causes of a rebound of the epidemic is the existence of isolated quasi-periodic or periodic solutions 

asymptotically stable of the system (8). Under the hypothesis that system (8) has periodic solutions, a condition at least 

necessary to avoid epidemic rebound is that one of the Lyapunov exponents of the solutions mentioned above be positive. 

The Lyapunov exponents must be calculated numerically in most cases, and the algorithms are generally large CPU time 

consumers. 

4. Conclusions 

In this work, a minimal theoretical framework has been developed to guide decision-makers from different governments 

in a reopening of the economy. Equation (6) and system (7) provides the necessary information for this. Functional (1) 

captures the essential ingredients of this process. Obviously, a refinement of it and the system (2) could provide more 

precise results. 
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