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Abstract 

Recently portfolio optimization has become widely popular in risk management, and the common practice is to use 

mean-variance or Value-at-Risk (VaR), despite the VaR being incoherent risk measure because of the lack of 

subadditivity. This has led to the emergence of the conditional value-at-risk (CVaR) approach, consequently, a gradual 

development of mean-CVaR portfolio optimization. To seek an optimal portfolio selection strategy and increase the 

robustness of the result, the paper studies the performance of portfolio optimization in Asian markets using a 

Monte-Carlo simulation tool, creates a variety of randomly selected portfolios that consists of Asian ADRs listed in 

NYSE from 2011 to 2016, and applies both optimization frameworks with different skewed fat-tailed distributions, 

including the Generalized Hyperbolic (GH) and skewed-T distribution. The main result shows that the Generalized 

Hyperbolic distribution produces the lowest risk under a given rate of return, while the skewed-T distribution creates a 

diversification allocation outcome similar to that of historical simulation. 
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1. Introduction 

In recent years, portfolio optimization has become one of the most important areas in financial risk management. Often, 

a financial analyst wants to minimize the risk for a given rate of return, or maximize the return given a desired risk level. 

Empirically, the most commonly used tool is a mean-variance, developed by Markowitz (1952), which applies quadratic 

programming to minimize the variance of the portfolio. In other words, it uses the variance to measure the portfolio risk. 

Nevertheless, the drawback of this approach, as explained by Markowitz, is the fact that variance does not differentiate 

a positive shock from a negative one. It treats the downside and upside risk in the same way. Moreover, another 

limitation of the mean-variance approach is that the model only works for a multivariate normal distribution. Such 

limitations weaken the applicability of mean-variance analysis, because it is well understood that the returns of financial 

markets are often not normally distributed, but exhibit excess kurtosis and skewness.  

To overcome the issues inherent in mean-variance approach, a separate measure, called Value-at-Risk (VaR), has 

become increasingly popular. The VaR is essentially the quantile of the loss function, measured as the worst loss to be 

expected over a specified time period under a certain confidence level. It enables the investor and portfolio analyst to 

better understand the scope of the worst loss under a different probability when triggered by downside risk. The 

weakness of VaR is that it only provides the minimum of the worst loss, rather than the actual loss beyond that level.  

More importantly, the VaR is not a coherent risk measure due to the lack of subadditivity. Acerbi and Tasche (2002) 

document that a risk measure, to be coherent, must satisfy four properties: monotonicity, positively homogeneity, 

translation invariance and sub-additivity. Sub-additivity means the risk of a portfolio made of two assets should be no 

more than the sum of their individual asset risks. In mathematical terms, it is  (where  

represents the risk measure). Put differently, sub-additivity is a fundamental and essential property in portfolio selection 

because it represents an investment principle: portfolio diversification contributes to risk reduction.  

The incoherence of VaR has led many to use an alternative, the conditional value-at-risk (CVaR), aka expected shortfall. 

The popularity of CVaR lies in two important areas: First, it possesses all the properties of a coherent risk measure. 

Second, CVaR provides a more comprehensive look at the worst-case loss since it measures the average loss of the tail 

distribution under different scenarios. The CVaR is an extension of the VaR that equals to the expected value of loss 

given the exceedance, so it is the conditional tail expectation of VaR. Rockafellar and Uryasev (2000) compare the 

performance of mean-variance and mean-CVaR, and find the issue can be formulated as a linear programming problem. 



Applied Economics and Finance                                          Vol. 5, No. 5; 2018 

2 

 

Alexander and Baptista (2004) analyze portfolio optimization in mean-variance model with a VaR or CVaR constraint 

and show that CVaR constraint is much effective to control slightly risk-free agents for a given confidence level. Ho, 

Cadle and Theobald (2008) evaluate the performance between CVaR, VaR and variance in portfolio optimization and 

demonstrate that CVaR is a better framework when dealing with a fat-tailed distribution.  

The popularity of a coherent risk measure such as CVaR has induced extensive study of the mean-CVaR portfolio 

optimization. To have a robust portfolio selection strategy, and address the existence of high kurtosis and skewness, this 

paper suggests using a simulation model to find the optimal portfolio allocation when applied with various skewed 

fat-tailed distributions on both optimization frameworks. 

This paper differs from other literatures about portfolio optimization in three important ways. First, it relaxes the 

constraint on return governed by a log-normal distribution. Second, it increases the robustness of the result using Monte 

Carlo simulation to random select a new portfolio, and analyzes the optimal allocation on both optimization frameworks, 

mean-variance and mean-CVaR. Third, it introduces a Generalized Hyperbolic (GH) and a skewed-T distribution to 

address the issues of non-normality, skewness and kurtosis. 

The remainder of the paper is organized as follows. Section 2 describes the background of the portfolio selection, 

mean-variance and mean-CVaR models. Section 3 describes the dataset and presents stylized findings. Section 4 

introduces the various skewed heavy-tailed distributions and shows the result of optimal allocation under different cases. 

Section 5 concludes.  

2. Portfolio Selection 

2.1 Markowitz Mean-Variance Optimization Framework 

The basic idea of mean-variance analysis is to maximize the expected return of a portfolio for a given level of variance 

(risk). It can be represented by mathematical form as follows: 

                                            (1) 

subject to  and  

where  is a vector of portfolio holdings of each asset,  is the variance-covariance matrix of returns for each asset,  

 is the targeted return of the portfolio, and R is a vector of expected return. 

An alternative version of the model is mean-variance trade-off formulation, that is, 

                                        (2) 

subject to  

where  is a vector of mean log-return of portfolio and c is a risk aversion coefficient. 

A commonly used practice in portfolio allocation is a restriction on short positions. In other words, only the long 

position is allowed in investing ( >0). As a result, a constrained mean-variance optimization becomes: 

                                       (3) 

subject to  and  

2.2 Mean-CVaR Optimization Framework 

The CVaR is the conditional tail distribution of VaR and can be expressed by 

                  (4) 

where q=1-p, L is the discounted loss. The VaR of a stochastic variable X is defined as the (1-p) level quantile of 

associated discounted loss L. Hence CVaR is an extension of VaR, and its sub-additivity property makes it to be a 

coherent risk measure than down-side risk VaR.  

To minimize the CVaR, we impose the constraints that initial capital must be fully invested in the assets ( ) 

and no short position is allowed in investment, therefore the mean-CVaR optimization can be written as  

                                      (5) 

subject to  

 and  
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where  is the tolerance level of expected return of portfolio with n assets, p is p-level loss quantile. 

The technical challenge in the equation above is that CVaR is an integral of VaR, meaning optimizing CVaR requires 

VaR calculated first. Rockafellar and Uryasev (2000) contribute to solving this issue by introducing the independence 

of the CVaR and VaR functions, simplifying the optimization programming process. In other words, CVaR could be 

calculated without first having to know VaR on which its definition depends. A central piece is to characterize the 

CVaRp and VaRp with an auxiliary function Hp, defined by  

 

where                                    (6) 

and  be the probability density function of the return vector R. With the help of the auxiliary variable, the 

mean-CVaR portfolio allocation can be stated as 

                                  (7) 

subject to  

and , where is the auxiliary variable (d=1,…,D), and L is the discounted loss. With convex 

function L(w,R), the optimization problem becomes a convex linear program1. 

3. Dataset 

To show the effect of exchange-rate risk in portfolio allocation, the paper uses the daily stock prices of foreign ADR 

(non-US issuers) currently listed in NYSE from 2011/01/01 to 12/31/2016. In August 2011, global stock market went 

through a sharp drop in prices affecting China and Japan. Also, in 2011, a magnitude 9.0 earthquake and tsunami struck 

the pacific coast of Tohohu and causes a deep impact on Japanese stock market. Between 2015 and 2016, Chinese stock 

market experienced a significant turbulence, with a third of the value of A-shares on the Shanghai Stock Exchange was 

wiped out within a month. Some call the major aftershocks as the Black Monday. In 2016, Japan went through one of 

its worst stock market slumps led by Nikkei 225 index. Considering China and Japan to be the two largest economies 

behind U.S., with enormous influence on Asian financial markets, we are particularly interested in these two countries 

stocks with different market capitalization. To make the selection more representative, we pick stocks from different 

sectors and industries. As a result, we narrow the list to 11 stocks and calculate each asset’s logarithm return to have a 

daily time series spanning six years. These stocks are CEA, SNP, HNP, PTR, BIDU, SINA, HMC, MTU, CAJ, TM and 

NTT. The first six stocks are from China, and the last 5 stocks are from Japan. It covers industries in travel and leisure, 

oil and gas, mobile telecommunication, electricity, automobile parts, technology hardware, banks and fixed line 

communication. Table 1 lists each ADR’s symbol, company name and associated industry. 

Table 1. Asset Symbol, Name of Company and Industry 

 Symbol Company Industry Listed 

NTT Nippon Telegraph and Telephone Corporation Fixed Line Telecommunications 9/29/94 
CAJ Canon Inc. Technology Hardware & Equipment 9/14/00 
TM Toyota Motors Corporation Automobile & Parts 9/29/99 
HNP Huaneng Power International Inc. Electricity 10/6/94 
SNP China Petroleum & Chemical Corp. Oil & Gas Producers 10/18/00 
BIDU Baidu Inc. Internet Content & Information 8/1/05 
HMC Honda Motors Co., Ltd. Automobile & Parts 2/11/77 
CEA China Eastern Airline Co., Ltd. Travel and Leisure 2/4/97 
PTR PetroChina Company Limited Oil & Gas Producers 4/6/00 
SINA SINA Corporation Internet Content & Information 4/3/00 
MTU Mitsubishi UFJ Financial Group Banks 9/19/89 

 

 

 

 

 

 

                                                        
1 See Skoglund and Chen (2009)  
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Figure 1 provides the historical stock price movement.  

 

Figure 1. Individual Asset Price From 2011 To 2016 

Figures 2.1 and 2.2 plot the daily asset returns in China and Japan, respectively.  

 

 

Table 2 provides the statistical summary of all assets’ daily returns 

Table 2. Summary Statistics of Individual Asset2 

 CEA SNP HNP PTR BIDU SINA HMC MTU CAJ TM NTT 

OBSERVATION 1509 1509 1509 1509 1509 1509 1509 1509 1509 1509 1509 
MINIMUM -14.51 -7.97 -10.17 -8.44 -16.25 -16.45 -8.49 -7.46 -7.92 -6.28 -5.34 
QUARTILE 1 -1.63 -1.04 -1.13 -1.12 -1.33 -1.52 -0.90 -1.09 -0.83 -0.76 -0.74 
MEDIAN -0.18 0.01 0.04 -0.03 -0.11 -0.06 0.00 0.00 0.00 0.00 0.04 
ARITHMETIC 
MEAN 

-0.01 0.01 0.03 -0.03 0.03 -0.01 -0.02 0.01 -0.04 0.03 0.04 

QUARTILE 3 1.52 1.00 1.30 1.03 1.40 1.53 0.90 1.08 0.80 0.80 0.78 
MAXIMUM 19.27 8.09 9.09 8.15 10.44 20.92 7.04 9.24 6.10 6.21 5.92 
SE MEAN 0.08 0.05 0.06 0.05 0.06 0.08 0.04 0.05 0.04 0.04 0.03 
VARIANCE 8.85 3.34 4.75 3.34 5.98 10.43 2.39 3.51 2.13 1.90 1.70 
STDEV 2.98 1.83 2.18 1.83 2.44 3.23 1.55 1.87 1.46 1.38 1.31 
SKEWNESS 0.44 0.05 -0.26 0.09 -0.09 0.25 -0.24 0.17 -0.38 0.01 0.06 
KURTOSIS 3.50 2.00 1.92 1.44 3.13 4.13 2.00 2.16 2.89 1.49 1.41 
JARQUE.BERA 819.41 251.50 247.62 131.51 618.17 1089.84 266.77 300.83 563.41 140.33 125.53 

                                                        
2 The observations cover from 01/01/20111 to 12/31/2016, all the numbers are measured in absolute units. 
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It is shown that each asset’s distribution is leptokurtic and asymmetric given the high excess kurtosis and skewness. In 

addition, a high Jarque-Bera test statistic suggests the non-normality of most of the distributions. The statistical results 

manifest the important properties of return distributions, thus motivate us to use a heavy-tailed skewed probability 

density function in the portfolio selection. 

Figure 3. Describes the relationship between volatility and return in portfolio optimization. 

 

Figure 3. Risk-Expected Return of Each Asset3 

An ideal asset is one that has lower volatility and higher returns, so is located on the top left side of the grid. As can be 

seen, NTT and TM are the most attractive assets because both are the more likely to yield a high amount of positive 

return per unit of volatility.  

4. Portfolio Allocation Result 

4.1 Asset-Allocation with Historical Distribution 

We first use the historical stock returns as an input to determine the optimal asset allocation using mean-variance and 

mean-CVaR. To be consistent, we use the full-sample period under a 95% confidence level with long only position 

because it is the standard level for internal risk management. To determine the weight of optimal allocation, we use the 

global minimum variance (GMV) obtained from the efficient portfolio frontier. In other words, the share of each asset 

in the optimal portfolio is selected from the portfolio with the lowest risk on the efficient frontier. Figure 4.1 displays 

the optimal allocation using the two frameworks. 

 

Figure 4.1. Asset Allocation using Historical Approach 

A high percentage of NTT, TM and CAJ in the optimal allocation in both frameworks reflects the benefit of investing in 

high risk-premium stocks. NTT stock comes on top with a controlling share of 43% in mean-variance framework. In 

                                                        
3 The expected return and volatility are measured in absolute terms. 
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addition, the historical distribution method shows that there is no strong evidence suggesting any difference between 

two frameworks in optimal allocation. 

4.2 Asset Allocation with Generalized Hyperbolic (GH) Distribution 

To address the heavy tails and skewness in the financial returns, some suggest using Variance Gamma distributed 

increments with a Levy process, while others opt for the hyperbolic distribution, or the Normal Inverse Gaussian 

distribution. All these belong to a subclass of Generalized Hyperbolic distribution (GH) introduced by 

Barndorff-Nielsen (1977). The Generalized Hyperbolic distribution is a part of the Multivariate Normal Mean-Variance 

Mixture (MNMVM) distribution that can be defined as follows:  

                                 (8) 

where  and  is a standard multivariate normal random variable and W is a non-negative mixing 

random variable,  is a distribution parameter, requires to be positive definite. 

A GH-distributed random variable is the one with above representation with  as the location parameter,  as the 

skewness parameter,  as the scale parameter and  the shock factor for skewness and scale. Birge and 

Chavez-Bedoya (2016) show the optimal portfolio allocation could be found in both close-form and a successive 

approximation scheme when asset returns follow a generalized hyperbolic skewed t distribution with exponential utility 

function.  

Here we apply Monte Carlo to generate 1000 simulated price of each stock using the estimated four moments from GH 

distribution. First, we determine the estimated moments using historical stock returns. Second, we create a randomized 

portfolio based on the estimated four moments. Third, we repeat the previous step 1000 times to have 1000 simulated 

stock returns. Figure 4.2 displays the optimal asset allocation between the two frameworks when applying a 

heavy-tailed skewed GH distribution. 

 

Figure 4.2. Asset Allocation using GH Distribution 

In a stark contrast to the historical approach, the new optimal portfolio gives a high degree of diversification. The result 

is a more diversified portfolio with an approximately equal amount of shares of each asset. Despite NTT, TM and CAT 

remains the top three biggest stock holdings, the share of their combined contributions decreases to less than 50%. A 

moderate increase in holding more stock highlights the fundamental principle, that is, the diversification lowers the 

portfolio risk, as defined here. 

4.3 Asset Allocation with Skewed-T Fat-Tailed Distribution 

4.3.1 Scenario Analysis One 

In the first scenario, we explore the impact of a simulated return using a skewed-t distribution with optimal degrees of 

freedom, that is, the degrees of freedom are self-determined based on the Akaike information criterion (AIC). The 

degrees of freedom determine the thickness of the tail, and the t-distribution resembles normal distribution when it 

increases. Determining an appropriate shape parameter is an important step in doing the portfolio selection. In that 

regard, we use the optimal degrees of freedom that minimizes the information criterion AIC. We choose these 

distributions because they have the ability to capture the properties of the empirical distribution. Figure 4.3.1 compares 

the performance of asset allocation between two optimization frameworks.  
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Figure 4.3.1 Asset Allocation from Optimal Skewed T 

Mean-CVaR is shown to include more assets in the allocation outcome than the mean-variance framework, as 

evidenced by an inclusion of high volatility asset like SINA. For the most part, the optimal allocation resulting from the 

optimal skewed-t distribution resembles that of the historical distribution. 

4.3.2 Scenario Analysis Two 

To further explore the effect of thickness of tail on the portfolio selection, we perform a second scenario analysis that 

presumes the simulated returns generated from skewed-t distributions with 2 and 3 degrees of freedom, respectively. As 

discussed earlier, a small degree of freedom implies a fatter tail in the distribution.  

Figure 4.3.2 shows the optimal asset allocation with 2 degrees of freedom.  

 

Figure 4.3.2. Asset Allocation Skewed T with 2 Degrees of Freedom 

Comparing the two frameworks, one notable difference is the composition of optimal asset. That is, CAJ supersedes 

TM as the second largest holding in 4.3.2, while both HMC and MTU hold a more important amount of share in the 

mean-CVaR. Figure 4.3.3 shows the case with 3 degrees of freedom.  
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Figure 4.3.3. Asset Allocation Skewed T with 3 Degrees of Freedom 

Interestingly, both optimization frameworks yield a more diversified optimal allocation using mean-variance analysis as 

opposed to mean-CVaR, though the statistical significance of the diversification remains uncertain.  

In summary, Table 3 compares the relative performance of each distribution in portfolio selection. To compare the 

performance of each risk measure, we apply volatility and CVaR within each framework. 

Table 3. Realized Volatility and CVaR under Different Distribution Functions 

REALIZED VOLATILITY 

 Historical 
Approach 

Generalized 
Hyperbolic 

Optimal  
Skewed T  

Skewed T  
with 2 D.F. 

Skewed T  
with 3 D.F. 

M-V 1.006 0.535 1.044 1.939 1.329 
MEAN-CVAR 1.022 0.559 1.051 1.987 1.342 

REALIZED CVAR 
 Historical 

Approach 
Generalized 
Hyperbolic 

Optimal  
Skewed T 

Skewed T  
with 2 D.F. 

Skewed T  
with 3 D.F. 

M-V 2.314 1.208 2.281 4.782 3.332 
MEAN-CVAR 2.295 1.173 2.268 4.681 3.297 

The table demonstrates that the hyperbolic distribution (GH) provides the smallest risk in the mean-variance approach, 

and the same can be found in mean-CVaR framework. On the other hand, the relative performance between 

mean-CVaR and mean-variance in modeling the portfolio risk, to some extent, depends more on the return distributions 

with the exception of GH distribution, as evidenced by a mixed risk measure. 

5. Conclusion 

The paper addresses the existence of skewness and fat tail in portfolio selection and investigates its potential effect 

using a Monte-Carlo simulation technique that applies both mean-variance and mean-CVaR risk optimization 

frameworks. The empirical results can be summed up as follows: First, the advantage of CVaR relative to variance is 

not definite, instead the distribution itself could sometimes hold more influence on the outcome. Our result differs from 

other studies that show mean-CVaR is unconditionally superior to mean-variance framework such as Hofsa (2015). 

Second, the GH (Generalized Hyperbolic) distribution is shown to outperform the rest in achieving the minimal risk in 

both frameworks with a diversified optimal allocation. Third, the optimal skewed-t distribution appears to produce an 

outcome similar to that of the historical method. In conclusion, when dealing with non-normality in financial assets, it is 

recommended to use the GH (Generalized Hyperbolic) in implementing the portfolio selection in Asian markets, which 

yields the lowest risk for a given level of target return. The similar findings can be found in Surya and Kurniawan (2014) 

paper that shows GH distribution provides an excellent fit for the financial return, and it can be extended to the normal 

and Student’s t distributions.  
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