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2. Introduction to the Theories and Models 

2.1 PGARCH Model 

Since Engle (1982) proposed the Auto-Regressive Conditional Heteroskedasticity (ARCH) model and used it to analyze 
the heteroscedasticity of the financial time series, T. Bollerslev (1986) proposed a Generalized Auto-Regressive 
Conditional Heteroskedasticity (GARCH) model, now GARCH becomes a standard tool for financial econometric 
analysis. Both two models are able to capture the volatility cluster of assets price changing and the "fat-tail". GARCH 
model assumes that the yield is subject to the Gaussian distribution, i.e. the yield distribution is symmetrical and hence 
asymmetric series match with the assumption deficiently. However, many empirical studies show that the yield of assets 
does not obey the Gaussian distribution strictly, it is an asymmetric skew distribution, and the empirical part of this 
paper will prove this point. 

The PGARCH model improved by the GARCH model can better reflect the asymmetry and the leverage effect. China’s 
futures transaction data meets the general characteristics of financial time series, so we combine Extreme Value Theory 
and Copula function to measure the VaR and ES under the assumption of Generalized Error Distribution (GED). 

The general expression for PGARCH is 

  ' 2, 0,t t t t ty x N     ，                   (1) 

  0 1 1 1 1 1 1
hh h

t t t t             ，            (2) 

Where h is power value. 

2.2 Extreme Value Theory and Risk Measurement 

Extreme Value Theory was proposed by the Swedish mathematician Nicolas Bernoulli in the eighteenth century. But 
until the twenties of the last century, EVT came into scholars’ vision as a prediction approach. At first, people often 
used the Gaussian distribution to estimate the possibility of extreme cases, but it may not reflect the real situation well. 
In 1928, Fisher and Tipper published a paper and eventually introduce EVT into financial timing analysis to fit the tail 
distribution. The basic content of EVT is consistent with the Gaussian distribution, the greater degree of deviation, the 
smaller the probability events hold. For describing the tail distribution, fitting approach of EVT is used to cover the 
statistical characteristics of the yield series. 

After decades developing, EVT derives out a large number of related models, which mainly include two types of 
models, namely BBM model and POT model. The BBM model requires much data in the modeling of the maximum 
value, while the extreme data is relatively lacking. In practice, BBM model is deficient. However, POT model has a 
lower requirement for data than the BBM model and it can handle the tail distribution and extreme value well. The POT 
model based on the General Pareto Distribution only needs to estimate the shape parameter and scale parameter  . 
Therefore, in this paper, we use POT model to analyze the tail distribution of the standardized residual series, which is 
derived from the portfolio yield. The expression of General Pareto Distribution is as follows, 

    
 ,

1 1 0

1 exp 0

y
yG

y 
  

 
       

，                (3) 

Where 0  and if 0  , then 0y  ; if 0  , then 0 y      

According to the contents of the EVT, for a given sufficiently high threshold value u, the variable value exceeding the 
threshold value is classified as the extreme tail and subject to General Pareto Distribution, and its expression can be 
written as follows, 

           ,1 ,F x F u x u F u x uG      ，            (4) 

Assuming that the number of samples exceeding the threshold value is N, replace  F u with   /n N n , and use the 
maximum likelihood method to estimate the GPD parameters ,  , and then we get 

    
1ˆ

ˆ 1 1
ˆ

N
F x x u

n






 

    
 

，                (5) 

Firstly, the standardized residual series of yield is sorted in ascending order. Setting the number of extremum as K, the 
threshold value is 1kZ  , so for 1q K n  , we can get estimated value of the quantile q corresponding to the 
standardized residual series that is 
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 1

ˆ 1
ˆ 1

ˆkq
q

ZZ
k n








         
，                (6) 

For given  1q q K n  , the VaR of t to t+1 is estimated as 

 1 1 ˆˆ ˆt
q t t quX Z   ，               (7) 

The Expected Shortfall is 

 
 

1
1 1

ˆ ˆ1
ˆ ˆˆ ˆ

ˆ1 ˆ1

t k
t t qq

q

Z
uES Z

Z

 


 


 

    
   

，            (8) 

2.3 Monte-Carlo Simulation Based on GPD 

Monte-Carlo simulation assumes that the asset price changes follow the form of a random process, we use the computer 
to complete the simulation process, resulting in a number of possible price path, and to build futures return distribution, 
and then estimate the VaR and ES in the risk-measurement model. The most commonly used model is Geometric 
Brownian Motion, the discrete form can be expressed as 

  t i t t tS S t t      ，             (9) 

t i t t iS S S   ，                                 (10) 

Where tu  represents threshold value, given the initial value, it can be calculated by figuring out tS ; we can get the 
distribution of random number  , generated by Copula function. 

3. Empirical Analysis 

3.1 Sample Selection and Data Processing 

In this paper, we choose the main futures contracts from Chinese commodity futures market; they are five futures 
contracts of Au, Cu, Al, Sr and Ta on the Shanghai Futures Exchange. The price data is selected from January 1, 2011, 
to December 30, 2015, totaling 1230 data points. All of the sample data comes from the Auto-Trader transaction client, 
and the relevant empirical solution is done using MATLAB and Eviews. 

Frist of all, we use the above five futures contracts to build up a portfolio with equal weights and then describe the 
return on the portfolio. The nature of the bilateral transaction of futures trading makes the realization of asset profit and 
loss in different ways; we can calculate the logarithmic rate of return by the following formula, 

  1 1ln ln lnt t t tR P P P    ，           (11) 

  1 1ln ln lnt t t tR P P P    ，           (12) 

Take the transaction as an example, use the daily closing price of the portfolio to calculate the logarithmic yield series, 
plot it with MATLAB as shown in Figure 1. 

 
Figure 1. The yield curve of the portfolio 

According to the above chart, we can find that the yield series of the portfolio has the following characteristics: the fluctuation 
of the yield is quite violent, and series has the continuity between the volatility, which may have the volatility cluster effect; 
the amplitude of the yield is asymmetrical and does not accord with the hypothesis of General Gaussian distribution. 
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Through the above analysis, the yield series may not satisfy the characteristics of the symmetric distribution. The 
autocorrelation test is used for the purpose of further modeling, calculating the logarithmic yield and its square series 
and finding out the autocorrelation function value of the portfolio, which analyzes whether the distribution of returns is 
consistent with the independent identically distribution (i.i.d.) hypothesis. The results show that the autocorrelation of 
the yield series is not significant, and the yield-square series has a large correlation. 

 
Figure 2. Autocorrelation plot of yield and yield-square series 

As can be seen from Figure 2, the ACF of the logarithmic yield series is within two standard deviations. Variables are 
generally subject to independent identical distribution. The ACF of the yield-square series is larger than the logarithmic 
yield series, indicating that its autocorrelation is significant and is not suitable for subsequent analysis. 

3.2 Estimation Based on PGARCH-EVT Model 

Through the analysis of the above chapters, the yield series of portfolio satisfies the general characteristics of the 
financial time series. Assuming that the error is subject to the General Error Distribution, we estimate the conditional 
variance of the yield series. The samples are analyzed by Eviews, and the conditional mean and sample 
heteroscedasticity series are separated. 

After obtaining the conditional variance and the conditional mean series, it is still necessary to know the distribution of 
the residual of the samples to calculate the historical VaR and ES values of the portfolio. Standardization of sample 
residual can be better adapted to subsequent estimates, the formula is as follows 

 t t
t

t

x u
Z




 ，             (13) 

Where tx  is the residual, tu  is the conditional mean of the residual; t  is the standardized deviation of residual; tu  
and t  can be estimated by PGARCH approach. 

There are several methods of measuring the standardized residual series, such as parametric method, nonparametric 
method and semi-parametric. The parametric method that is, given the known distribution, using the samples to solve 
the parameters of the distribution function, and get the sample distribution. It is usually better to fit the sample 
distribution at the time of the known general distribution. Due to the atypicality of financial time series, using the 
known distribution to fit the sample series results in a poor conclusion. The nonparametric method is aimed at 
estimating CDF, although it is unable to meet the most of the data, especially in the tail fitting. Compared with 
nonparametric historical simulations and Monte Carlo methods, the Extreme Value Theory in the semi-parametric 
method can estimate the tail distribution of residual much better. 

In the Extreme Value Theory, it is assumed that the sample limit distribution obeys the Generalized Pareto Distribution. 
First, find the upper and lower limits so that each tail retains a residual of 10%. And then these residual in each tail are 
reduced to the parameter of GPD below the relevant threshold by the MLE method. Given the excess of each tail, 
optimize the negative logarithmic likelihood function to estimate the GPD scale parameter   and the shape parameter
 . 

There are two ways to handle with the residual series. First, retaining the original value of residual, the second is 
squaring the residual. Risk management needs to control the systematic error, to avoid different conclusion resulted 
from different data processing approaches. Therefore, we testify the autocorrelation of residual-square and residual 
series and analyze the degree of independence, as shown in Figure 3. The left side is the residual ACF, the right side of 
the residual-square of the ACF. 
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Figure 3. Standardized residual and residual-square of ACF 

As shown in Figure 3 that the ACF of residual series is within the two standard deviations, which is consistent with the 
characteristics of weak sample autocorrelation, and it can be regarded as the prerequisite for the independent identically 
distribution. Taking the distribution characteristics into account, we use the Generalized Pareto Distribution to model 
the yield residual series. In modeling the tail distribution, variables are required to obey independent distributions. 
Therefore, with the support of a large number of sample data, this paper intends to use GPD to fit the distribution of tail 
data. 

In order to further detect the distribution characteristics of the logarithmic yield series, we plot a quantile-quantile plot 
(Q-Q plot) of the residual series. 

 

Figure 4. Normal characteristics of portfolio yield distribution 

As shown in Figure 4 that the quantile of the sample and the quantile of the Gaussian distribution deviate significantly, 
which does not meet the assumption of Gaussian distribution, and there exists “fat-tail" characteristic. We can conclude 
that residual series is much more subject to EVT model. 

In this paper, we refer to the two-step method of Danielson and de Vries (2000), which is fitted by the Gaussian kernel 
estimation method. The upper and lower tail distributions are assumed to be Generalized Pareto Distributions and fitted 
with the distribution parameters by MLE. The upper and lower tail distribution curves are connected and shown in 
Figure 5, respectively, in red and blue showing the lower tail and upper tail fitting results. We draw the CDF as shown 
in Figure 6 below. 
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Figure 5. The distribution curve of yield residual 

The results of the fitting of the sample CDF need to be further analyzed. The thresholds of 5% and 10% are set 
respectively. We use the K-S test to testify the upper tail fitting effect of the Generalized Pareto Distribution. 

 
Figure 6. Sample CDF Fitting Effect Analysis (5% and 10%) 

The results of the K-S test are shown in the following table, 

Table 1. K-S test results (5% and 10%) 

Threshold value 5% 10% 

p-value 5.5543e-49 1.0162e-100 

Test statistic 0.9655 1 

Critical value 0.1752 0.1262 

Based on the results of Table 1, the upper tail distribution of the fitted residual is approximately identical to the actual 
results based on the 5% and 10% confidence levels and can be used to represent the distribution of the standard residual 
series. 

After determining the distribution of the residual series, we can use Eq. (8) to calculate the risk value and the expected 
loss of the sample combination from January 1, 2011, to December 30, 2015. 

Table 2. The review results: the estimated VaR and ES 

p-value 95% level 99% level 

VaR 0.0659 0.0496 

ES 0.0369 0.0309 

As shown in Table 2, at 95% confidence level, VaR is unable to cover the data and the estimation is poor to support the 
risk management. In the actual measurement process, extreme price changes may have a great impact on the results of 
the calculation; using VaR to measure the asset risk is easy to underestimate the loss caused by unable factors. For the 
financial supervision departments, it should be paid attention to the hidden danger signal. 
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By Monte-Carlo simulation of futures assets price changes, assuming that the series is subject to General Pareto 
Distribution, we use the MATLAB to realize the process, and the simulation paths shown in Figure 8. Based on this 
approach, we estimate the next month, that is, 22 trading days, we find the simulation result as follows, 

Table 3. Monte Carlo simulation results 

Maximum Simulation Simulated VaR 

Gain Loss 90% 95% 99% 

12.6841% 9.6616% -5.3358% -6.8495% -10.0796% 

Though the analysis of the above Table 3, we can conclude that the maximum expected loss of futures market can be 
controlled with 6% under the confidence level of 90%, and the overall risk can be controlled under different confidence 
levels. Financial supervision departments can establish different standards of confidence level based on different market 
conditions, so as to adjust the threshold of asset price changes in order to control the risk level of the capital market 
transaction. 

4. Conclusion and Policy Suggestion 

Financial risk management is an important part of financial supervision. We take the sample of Shanghai Futures market 
as an example, and then we calculate the risk value and expected loss of portfolio, and finally conclude that the risk is 
controllable at a certain level of confidence. In this paper, according to the basic process of financial modeling, we 
compared with the characteristics of different models and choose the most appropriate model for measuring financial 
risk and expected loss, the results show that our model can reflect the financial risk of portfolio and assets in both 
historical and simulated data very well. The risk measurement based on PGARCH-EVT-Copula model can fully reflect 
the asymmetric distribution of financial time and measure the fluctuation spillover effect between assets. Each 
sub-model in this paper is combined with their characteristics as follows, 

● The PGARCH model is an improved asymmetric model based on GARCH model, which reflect the asymmetric 
characteristics of financial time series. In this paper, the residual-square series divided from PGARCH model is close to 
the real random fluctuation and better for risk management. There is less systematic error; 

● EVT model as a semi-parametric method does not require more data support. We get rid of the limitations of 
parameter estimation. EVT analyzes the upper and lower tail distribution of financial time series and reflects the 
abnormal fluctuations in financial asset prices changes, fitting by the General Pareto Distribution. To some extent, we 
will be more close to the real changes of extreme value; 

● Copula theory is used to reflect the fluctuation spillover effect of assets by calculating the correlation coefficient of 
each asset in the portfolio. The yield series of assets in the portfolio often shows autocorrelation, such as the metal 
futures contracts used in this paper. It can be calculated in Copula function that the correlation coefficient of the assets, 
so as to obtain the quantitative description of correlation of different assets. 

Risk management requires good indicators to reflect the level of asset risk. This paper compares VaR and ES's effects in 
measuring risk and finds that the ES proposed on the basis of VARs can better respond to the extreme situation of loss 
and give the possibility of extreme loss. In this paper, five futures contracts in China Shanghai futures market are built a 
financial portfolio. By calculating the ES of the portfolio, we conclude that at a certain probability level, when the 
market risk is less than the threshold value, the overall risk is in the state of control; when the market risk exceeds the 
threshold value. It is acceptable in some probability, but if the risk of overloading continues, it may indicate that the risk 
is gradually widening, and the possibility of financial crisis is increasing. It is necessary for financial supervision 
departments to take appropriate action and adjust the market state, controlling the risk at a reasonable level. 

Financial supervision departments should be wary of the financial crisis signals. In order to evade the future risk 
uncertainty, building up financial control model with historical data to reflect the trend of risk management has 
reference significance. 
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